Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
Add more filters










Publication year range
1.
Sci Rep ; 12(1): 8369, 2022 May 19.
Article in English | MEDLINE | ID: mdl-35589740

ABSTRACT

Carbonaceous chondrites (CCs) contain the earliest preserved Solar System material, and objects containing this material are targets of numerous sample return missions. Both laboratory and remote sensing data have shown that this material can be highly porous, but the origin and nature of this porosity is currently not well understood. Because the majority of porosity within CCs is submicron to micron in size, previous lab efforts have been restricted by the limited observational scale required to examine this porosity with currently available techniques. Here we present results from a newly developed technique that allows submicron porosity to be examined in 3D within a 12 mm3 volume of CM Murchison. We use X-ray computed tomography combined with the highly attenuating noble gas xenon to characterize porosity well below the spatial resolution of the data (3.01 µm/voxel). This method not only allows examination of submicron porosity within a significantly larger volume than previously possible but also reveals the full three-dimensional porosity structure and pore connectivity. Our data reveal that some fine-grained rims (FGRs) surrounding chondrules have a complex 3D porosity structure, suggesting formation of the FGRs via dust aggregates or variable secondary processing around the rim after accretion.

2.
Med Leg J ; 87(3): 121-126, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31232645

ABSTRACT

The Pliocene hominin fossil 'Lucy' (A.L. 288-1, Australopithecus afarensis) was discovered in the Afar region of Ethiopia in 1974 and dates to 3.18 million years in age. In Kappelman et al.,1 we presented the results of a detailed investigation of the skeleton that for the first time identified and described unusual bone-into-bone compressive fractures at several of the major long bone joints. Using multiple criteria, we concluded that these fractures are more likely to be perimortem than postmortem in nature. We next evaluated a number of possible mechanisms that could have produced these fractures and, on the basis of all of the evidence, hypothesised that a fall from considerable height, likely out of a tree, with its resulting vertical deceleration event, most closely matched the pattern of fractures preserved in the skeleton and was also the probable cause of death. Charlier et al. disagree with our approach and hypothesis, and instead present what they consider to be better evidence supporting two of the other possible mechanisms for breakage that we also investigated, a mudslide/flood, or an animal attack. We here show that the evidence presented by Charlier et al. is incorrectly interpreted, and that these two alternative hypotheses are less likely to be responsible for the fractures.


Subject(s)
Accidental Falls/mortality , Cause of Death , Landslides/mortality , Animals , Ethiopia , Female , Forensic Anthropology/methods , Fractures, Bone/etiology , Fractures, Bone/mortality , Hominidae/injuries , Humans
3.
PLoS One ; 11(11): e0166095, 2016.
Article in English | MEDLINE | ID: mdl-27902687

ABSTRACT

While there is broad agreement that early hominins practiced some form of terrestrial bipedality, there is also evidence that arboreal behavior remained a part of the locomotor repertoire in some taxa, and that bipedal locomotion may not have been identical to that of modern humans. It has been difficult to evaluate such evidence, however, because of the possibility that early hominins retained primitive traits (such as relatively long upper limbs) of little contemporaneous adaptive significance. Here we examine bone structural properties of the femur and humerus in the Australopithecus afarensis A.L. 288-1 ("Lucy", 3.2 Myr) that are known to be developmentally plastic, and compare them with other early hominins, modern humans, and modern chimpanzees. Cross-sectional images were obtained from micro-CT scans of the original specimens and used to derive section properties of the diaphyses, as well as superior and inferior cortical thicknesses of the femoral neck. A.L. 288-1 shows femoral/humeral diaphyseal strength proportions that are intermediate between those of modern humans and chimpanzees, indicating more mechanical loading of the forelimb than in modern humans, and by implication, a significant arboreal locomotor component. Several features of the proximal femur in A.L. 288-1 and other australopiths, including relative femoral head size, distribution of cortical bone in the femoral neck, and cross-sectional shape of the proximal shaft, support the inference of a bipedal gait pattern that differed slightly from that of modern humans, involving more lateral deviation of the body center of mass over the support limb, which would have entailed increased cost of terrestrial locomotion. There is also evidence consistent with increased muscular strength among australopiths in both the forelimb and hind limb, possibly reflecting metabolic trade-offs between muscle and brain development during hominin evolution. Together these findings imply significant differences in both locomotor behavior and ecology between australopiths and later Homo.


Subject(s)
Bone and Bones/anatomy & histology , Extremities/anatomy & histology , Femur Neck/anatomy & histology , Hominidae/anatomy & histology , Locomotion/physiology , Animals , Hominidae/physiology
4.
J Exp Zool B Mol Dev Evol ; 326(6): 352-362, 2016 09.
Article in English | MEDLINE | ID: mdl-27511594

ABSTRACT

Diffusible iodine-based contrast-enhanced computed tomography presents a comparatively new tool kit for imaging fine-scale three-dimensional phenotypes that is rapidly becoming standard anatomical practice. However, relatively few studies have attempted to look at subtle differences in staining protocols or attempted to model tissue reactions to gain insight into staining mechanisms. Here, two iodine-based contrast agents, iodine-ethanol (I2 E) and iodine-potassium iodide (I2 KI) in neutral buffered formalin , were applied to avian cephalic specimens to investigate their effectiveness. We found that the two solutions had markedly different results for staining of mineralized skeletal tissues (i.e., bone). Other tissues, including muscles, epithelia, and common connective tissues (e.g., lamina propria) were assessed individually and show minor differences in the sorption of iodine. Numerical simulations suggest that different results from I2 E and I2 KI-formaldehyde staining are due to different partition coefficients and retardation factors of tissues, fixation effects, as well as distinct iodine diffusion and sorption patterns. We found a clear positive relationship between glycogen concentration and grayscale values measured within muscle, epithelia, nervous tissues, and glands. We also found the use of ethanol for tissue fixation and following I2 E staining outperforms I2 KI-formaldehyde by providing higher efficiency for acquiring greater contrast both between different soft tissues and between mineralized and nonmineralized tissues.


Subject(s)
Contrast Media , Head/diagnostic imaging , Iodine , Palaeognathae/anatomy & histology , Tomography, X-Ray Computed/methods , Animals , Ethanol , Head/anatomy & histology , Imaging, Three-Dimensional/methods , Potassium Iodide
5.
Nature ; 537(7621): 503-507, 2016 09 22.
Article in English | MEDLINE | ID: mdl-27571283

ABSTRACT

The Pliocene fossil 'Lucy' (Australopithecus afarensis) was discovered in the Afar region of Ethiopia in 1974 and is among the oldest and most complete fossil hominin skeletons discovered. Here we propose, on the basis of close study of her skeleton, that her cause of death was a vertical deceleration event or impact following a fall from considerable height that produced compressive and hinge (greenstick) fractures in multiple skeletal elements. Impacts that are so severe as to cause concomitant fractures usually also damage internal organs; together, these injuries are hypothesized to have caused her death. Lucy has been at the centre of a vigorous debate about the role, if any, of arboreal locomotion in early human evolution. It is therefore ironic that her death can be attributed to injuries resulting from a fall, probably out of a tall tree, thus offering unusual evidence for the presence of arborealism in this species.


Subject(s)
Accidental Falls , Fossils , Fractures, Bone , Hominidae , Animals , Ethiopia , Female , Models, Theoretical
6.
Sci Data ; 3: 160040, 2016 Jun 07.
Article in English | MEDLINE | ID: mdl-27272251

ABSTRACT

We describe X-ray computed tomography (CT) datasets from three specimens recovered from Early Cretaceous lakebeds of China that illustrate the forensic interpretation of CT imagery for paleontology. Fossil vertebrates from thinly bedded sediments often shatter upon discovery and are commonly repaired as amalgamated mosaics grouted to a solid backing slab of rock or plaster. Such methods are prone to inadvertent error and willful forgery, and once required potentially destructive methods to identify mistakes in reconstruction. CT is an efficient, nondestructive alternative that can disclose many clues about how a specimen was handled and repaired. These annotated datasets illustrate the power of CT in documenting specimen integrity and are intended as a reference in applying CT more broadly to evaluating the authenticity of comparable fossils.


Subject(s)
Fossils , Tomography, X-Ray Computed , Animals , Humans , Paleontology , Torso , Vertebrates
7.
BMC Physiol ; 15: 5, 2015 Dec 21.
Article in English | MEDLINE | ID: mdl-26691327

ABSTRACT

BACKGROUND: Iodine-based solutions have long been known to be effective in aiding the differentiation among soft tissues in both fundamental anatomical research and for clinical diagnoses. Recently the combination of this particular contrasting agent with micro-computed tomography (micro-CT) has resulted in an array of high-quality image data, in which anatomical structures not visible in conventional CT can be identified and quantified. However, there has been only limited data available to inform detailed protocols for staining large specimens. Further, modeling of the staining mechanism has focused on simple diffusion processes. RESULTS: A low concentration of iodine-based buffered formalin solution with a long staining period was used to visualize soft-tissue structures in a large goose head. The staining effect was analyzed by serially measuring the micro-CT profiles across coronal sections throughout the staining period. Regular replacement of the staining solution combined with a longer staining period significantly improved contrast within tissues. A simplified one-dimensional Diffusion-Sorption model with a three-zone domain was used to simulate the diffusion process by calculating the concentration profile of iodine across the adductor region, which fits well with the experiment data. Observations of changes in the concentration of the staining agent and simulation results suggest that the sorption of iodine by tissues significantly affects the effective diffusion coefficient for the contrasting agent. CONCLUSIONS: The Diffusion-Sorption model better explains previously reported difficulties in staining large samples comprised of tissues with high partition coefficients (K d ). Differences in partition coefficient (K d ), bulk density (ρ b ), and porosity (θ) could further explain the observed variation in staining rate and maximal staining effect among different tissues. Recommended protocols for staining large specimens are detailed.


Subject(s)
Contrast Media , Imaging, Three-Dimensional/methods , Iodine , Tomography, X-Ray Computed/methods , Animals , Brain/diagnostic imaging , Geese
8.
J Hum Evol ; 59(2): 202-13, 2010 Aug.
Article in English | MEDLINE | ID: mdl-20655571

ABSTRACT

The appearance of a forefoot push-off mechanism in the hominin lineage has been difficult to identify, partially because researchers disagree over the use of the external skeletal morphology to differentiate metatarsophalangeal joint functional differences in extant great apes and humans. In this study, we approach the problem by quantifying properties of internal bone architecture that may reflect different loading patterns in metatarsophalangeal joints in humans and great apes. High-resolution x-ray computed tomography data were collected for first and second metatarsal heads of Homo sapiens (n = 26), Pan paniscus (n = 17), Pan troglodytes (n = 19), Gorilla gorilla (n = 16), and Pongo pygmaeus (n = 20). Trabecular bone fabric structure was analyzed in three regions of each metatarsal head. While bone volume fraction did not significantly differentiate human and great ape trabecular bone structure, human metatarsal heads generally show significantly more anisotropic trabecular bone architectures, especially in the dorsal regions compared to the corresponding areas of the great ape metatarsal heads. The differences in anisotropy between humans and great apes support the hypothesis that trabecular architecture in the dorsal regions of the human metatarsals are indicative of a forefoot habitually used for propulsion during gait. This study provides a potential route for predicting forefoot function and gait in fossil hominins from metatarsal head trabecular bone architecture.


Subject(s)
Anthropometry/methods , Hominidae/anatomy & histology , Metatarsal Bones/anatomy & histology , Animals , Anisotropy , Anthropology, Physical , Female , Gait , Humans , Male , Statistics, Nonparametric , Tomography, X-Ray Computed
9.
Am J Phys Anthropol ; 141(4): 583-93, 2010 Apr.
Article in English | MEDLINE | ID: mdl-19918988

ABSTRACT

The relationship between mandibular form and biomechanical function is a topic of significant interest to morphologists and paleontologists alike. Several previous studies have examined the morphology of the mandible in gouging and nongouging primates as a means of understanding the anatomical correlates of this feeding behavior. The goal of the current study was to quantify the trabecular bone structure of the mandibular condyle of gouging and nongouging primates to assess the functional morphology of the jaw in these animals. High-resolution computed tomography scan data were collected from the mandibles of five adult common marmosets (Callithrix jacchus), saddle-back tamarins (Saguinus fuscicollis), and squirrel monkeys (Saimiri sciureus), respectively, and various three-dimensional morphometric parameters were measured from the condylar trabecular bone. No significant differences were found among the taxa for most trabecular bone structural features. Importantly, no mechanically significant parameters, such as bone volume fraction and degree of anisotropy, were found to vary significantly between gouging and nongouging primates. The lack of significant differences in mechanically relevant structural parameters among these three platyrrhine taxa may suggest that gouging as a habitual dietary behavior does not involve significantly higher loads on the mandibular condyle than other masticatory behaviors. Alternatively, the similarities in trabecular architecture across these three taxa may indicate that trabecular bone is relatively unimportant mechanically in the condyle of these primates and therefore is functionally uninformative.


Subject(s)
Cebidae/anatomy & histology , Cebidae/physiology , Feeding Behavior/physiology , Mandibular Condyle/anatomy & histology , Mandibular Condyle/physiology , Animals , Biomechanical Phenomena , Diet
10.
Am J Phys Anthropol ; 138(3): 318-32, 2009 Mar.
Article in English | MEDLINE | ID: mdl-18785633

ABSTRACT

Although adult skeletal morphological variation is best understood within the framework of age-related processes, relatively little research has been directed towards the structure of and variation in trabecular bone during ontogeny. We report here new quantitative and structural data on trabecular bone microarchitecture in the proximal tibia during growth and development, as demonstrated in a subadult archaeological skeletal sample from the Late Prehistoric Ohio Valley. These data characterize the temporal sequence and variation in trabecular bone structure and structural parameters during ontogeny as related to the acquisition of normal functional activities and changing body mass. The skeletal sample from the Fort Ancient Period site of SunWatch Village is composed of 33 subadult and three young adult proximal tibiae. Nondestructive microCT scanning of the proximal metaphyseal and epiphyseal tibia captures the microarchitectural trabecular structure, allowing quantitative structural analyses measuring bone volume fraction, degree of anisotropy, trabecular thickness, and trabecular number. The microCT resolution effects on structural parameters were analyzed. Bone volume fraction and degree of anisotropy are highest at birth, decreasing to low values at 1 year of age, and then gradually increasing to the adult range around 6-8 years of age. Trabecular number is highest at birth and lowest at skeletal maturity; trabecular thickness is lowest at birth and highest at skeletal maturity. The results of this study highlight the dynamic sequential relationships between growth/development, general functional activities, and trabecular distribution and architecture, providing a reference for comparative studies.


Subject(s)
Tibia/anatomy & histology , Adult , Age Distribution , Aged , Agriculture , Anthropology, Physical , Body Weight , Female , Humans , Male , Ohio , Tibia/growth & development , Young Adult
11.
Eur J Oral Sci ; 114 Suppl 1: 360-4; discussion 375-6, 382-3, 2006 May.
Article in English | MEDLINE | ID: mdl-16674713

ABSTRACT

Enamel thickness is an important diagnostic characteristic in Hominoidea. However, the sample size is extremely small, relying upon mostly fractured specimens and a few sectioned specimens, providing an estimate of enamel thickness only. What is needed to fully understand the significance of enamel thickness is a non-destructive technique that is able to obtain the thickness, density, and volume of the dental hard tissues of large samples, thereby providing an accurate means of relating thickness, area, volume, and the pattern of distribution of both enamel and dentin. Investigators have attempted to circumvent this problem by developing a variety of indexes. However, we are still left with subjective descriptions, such as 'thin', 'thick', 'intermediate thick', and 'hyperthick'. The purpose of this investigation was therefore to demonstrate the ability of high-resolution X-ray computed microtomography (HRXCT), as a non-destructive method, to produce, accurately and reliably, contiguous slices revealing the thickness and area of enamel, dentin, and pulp chamber. Using imaging software, three-dimensional reconstructions were produced, which provided volume data for enamel and dentin. Three-dimensional reconstruction of HRXCT images provide, for the first time, the capability of accurately quantifying enamel and dentin thickness, distribution and volume, thereby eliminating the necessity of destructive thin-sectional analysis.


Subject(s)
Dental Enamel/diagnostic imaging , Image Processing, Computer-Assisted/methods , Imaging, Three-Dimensional/methods , Tomography, X-Ray Computed/methods , Animals , Dental Enamel/ultrastructure , Dental Pulp Cavity/diagnostic imaging , Dental Pulp Cavity/ultrastructure , Dentin/diagnostic imaging , Dentin/ultrastructure , Fossils , Gorilla gorilla , Hominidae , Humans , Pan troglodytes , Software
12.
Am J Phys Anthropol ; 129(3): 410-7, 2006 Mar.
Article in English | MEDLINE | ID: mdl-16323186

ABSTRACT

In this pilot study, we point out potential differences between calcaneal trabecular microarchitecture in humans and nonhuman large apes, such as increased degree of anisotropy, reduced bone volume fraction, and very stereotypical orientation of the trabeculae. Even though sample size does not permit us to investigate the issue statistically, the observed differences between humans and other hominoids warrants further in-depth investigation. We also show that some measurements of the trabecular network might be dependent on sampling density, which can be difficult to deal with in the case of animals of different body masses. We also present a new visualization technique that summarizes the trabecular network orientation, and makes it more readily interpretable than the summary statistics of the underlying fabric tensor of the orientation matrix.


Subject(s)
Calcaneus/ultrastructure , Hominidae/anatomy & histology , Animals , Anisotropy , Body Weights and Measures , Humans , Image Processing, Computer-Assisted , Species Specificity , Tomography, X-Ray Computed
13.
Am J Bot ; 93(12): 1848-51, 2006 Dec.
Article in English | MEDLINE | ID: mdl-21642129

ABSTRACT

High resolution x-ray computed tomography (HRXCT) was used to image pyritized fossil fruits from the Lower Eocene London Clay flora to test the utility of this technique for paleobotanical application. The combination of carbon-pyrite preservation and void spaces between fruit and seed layers within fossils provides differences in density and composition that enable excellent imaging. Fossil fruits of Palaeorhodomyrtus subangulata (Bowerbank) Reid & Chandler (Myrtaceae) were investigated in situ within their silicone fluid conservation medium, which protects these unstable fossils from oxygen and humidity. HRXCT recovers taxonomically informative anatomical and morphological detail and provides a means of nondestructive examination of delicate type materials and other important specimens. These results suggest that HRXCT will be applicable to a broad spectrum of pyritized fossils to record structural details in inherently unstable materials.

14.
J Morphol ; 265(3): 249-63, 2005 Sep.
Article in English | MEDLINE | ID: mdl-15690365

ABSTRACT

The elastic properties and mechanical behavior of trabecular bone are largely determined by its three-dimensional (3D) fabric structure. Recent work demonstrating a correlation between the primary mechanical and material axes in trabecular bone specimens suggests that fabric orientation may be used to infer directional components of the material strength and, by extension, the hypothetical loading regime. Here we quantify the principal orientation of trabecular bone in the femoral head and relate these principal fabric directions to loading patterns during various locomotor behaviors. The proximal femora of a diverse sample of prosimians were scanned using a high-resolution X-ray computed tomography scanner with resolution of better than 50 mum. Spherical volumes of interest were defined within the femoral heads and the 3D fabric anisotropy was calculated using the mean intercept length and star volume distribution methods. In addition to differences in bone volume and anisotropy, significant differences were found in the spatial orientation of the principal trabecular axes depending on locomotor behavior. The principal orientations for leapers (Galago, Tarsius, Avahi) are relatively tightly clustered (alpha(95) confidence limit: 8.2; angular variance s: 18.2 degrees ) and oriented in a superoanterior direction, while those of nonleapers are more variable across a range of directions (alpha(95): 16.8; s: 42.0 degrees ). The mean principal directions are significantly different for leaping vs. nonleaping taxa. These results further suggest a relationship between bone microstructure in the hip joint and locomotor behavior and indicate a similarity of loading across leapers despite differences in kinematics and phylogeny.


Subject(s)
Bone and Bones/anatomy & histology , Femur Head/anatomy & histology , Hip Joint/anatomy & histology , Locomotion , Primates/anatomy & histology , Animals , Anisotropy , Biomechanical Phenomena , Mathematics , Species Specificity , Tomography, X-Ray Computed
15.
Nature ; 433(7023): 305-8, 2005 Jan 20.
Article in English | MEDLINE | ID: mdl-15662422

ABSTRACT

Long-standing controversy surrounds the question of whether living bird lineages emerged after non-avian dinosaur extinction at the Cretaceous/Tertiary (K/T) boundary or whether these lineages coexisted with other dinosaurs and passed through this mass extinction event. Inferences from biogeography and molecular sequence data (but see ref. 10) project major avian lineages deep into the Cretaceous period, implying their 'mass survival' at the K/T boundary. By contrast, it has been argued that the fossil record refutes this hypothesis, placing a 'big bang' of avian radiation only after the end of the Cretaceous. However, other fossil data--fragmentary bones referred to extant bird lineages--have been considered inconclusive. These data have never been subjected to phylogenetic analysis. Here we identify a rare, partial skeleton from the Maastrichtian of Antarctica as the first Cretaceous fossil definitively placed within the extant bird radiation. Several phylogenetic analyses supported by independent histological data indicate that a new species, Vegavis iaai, is a part of Anseriformes (waterfowl) and is most closely related to Anatidae, which includes true ducks. A minimum of five divergences within Aves before the K/T boundary are inferred from the placement of Vegavis; at least duck, chicken and ratite bird relatives were coextant with non-avian dinosaurs.


Subject(s)
Birds/anatomy & histology , Birds/classification , Fossils , Phylogeny , Animals , Chickens/anatomy & histology , Chickens/classification , Dinosaurs/classification , Ducks/anatomy & histology , Ducks/classification , History, Ancient , Palaeognathae/anatomy & histology , Palaeognathae/classification , Skeleton , Time Factors
16.
Nature ; 430(7000): 666-9, 2004 Aug 05.
Article in English | MEDLINE | ID: mdl-15295597

ABSTRACT

Archaeopteryx, the earliest known flying bird (avialan) from the Late Jurassic period, exhibits many shared primitive characters with more basal coelurosaurian dinosaurs (the clade including all theropods more bird-like than Allosaurus), such as teeth, a long bony tail and pinnate feathers. However, Archaeopteryx possessed asymmetrical flight feathers on its wings and tail, together with a wing feather arrangement shared with modern birds. This suggests some degree of powered flight capability but, until now, little was understood about the extent to which its brain and special senses were adapted for flight. We investigated this problem by computed tomography scanning and three-dimensional reconstruction of the braincase of the London specimen of Archaeopteryx. Here we show the reconstruction of the braincase from which we derived endocasts of the brain and inner ear. These suggest that Archaeopteryx closely resembled modern birds in the dominance of the sense of vision and in the possession of expanded auditory and spatial sensory perception in the ear. We conclude that Archaeopteryx had acquired the derived neurological and structural adaptations necessary for flight. An enlarged forebrain suggests that it had also developed enhanced somatosensory integration with these special senses demanded by a lifestyle involving flying ability.


Subject(s)
Birds/anatomy & histology , Brain/anatomy & histology , Dinosaurs/anatomy & histology , Ear, Inner/anatomy & histology , Fossils , Adaptation, Physiological , Animals , Birds/physiology , Brain/physiology , Dinosaurs/physiology , Ear, Inner/physiology , Flight, Animal , Skull/anatomy & histology
17.
J Morphol ; 260(1): 1-12, 2004 Apr.
Article in English | MEDLINE | ID: mdl-15052592

ABSTRACT

The horn sharks (Heterodontidae: Chondrichthyes) represent one of four independent evolutions of durophagy in the cartilaginous fishes. We used high-resolution computed tomography (CT scanning) to visualize and quantify the mineralized tissue of an ontogenetic series of horn sharks. CT scanning of neonatal through adult California horn sharks (Heterodontus francisci) confirmed that this technique is effective for examining mineralized tissue in even small (<10 mm) specimens. The jaw joint is among the first areas to become mineralized and is the most heavily mineralized area in the cranium of a neonatal horn shark. The hyoid is also well mineralized, although the poorly mineralized molariform teeth indicate that the neonatal animal may be a suction feeder on softer prey. The symphysis of the jaws never mineralizes, in sharp contrast to the condition in the hard prey-crushing stingrays. Digitally reslicing the CT scans along the jaws allowed measurement of the second moment of area (Ina). Assuming that the jaws are made of the same material at all ages, Ina is an indicator of the flexural stiffness of the jaws. In all sizes of shark the lower jaws were stiffer than the upper and the stiffness increased in the area of the molariform teeth. The central region of the jaws, where the rami meet, support cuspidate grasping teeth and has the lowest Ina. The spotted eagle ray (Aetobatus narinari), a hard prey-crushing stingray, shows a different pattern of flexural stiffness, with the peak at the central part of the jaws where the prey is reduced between flattened tooth plates. Although the eagle ray jaws have a higher Ina than the horn shark, they are also far more heavily mineralized. When the relative amounts of mineralization are taken into account, horn sharks do better with what mineral they have than does the eagle ray. With a tight jaw joint and loose mandibular symphysis, as well as nearly opposite patterns of stiffness in the jaws, it is clear that two of the clades of hard prey specialists use very different methods for cracking the hard prey problem.


Subject(s)
Jaw/anatomy & histology , Maxillofacial Development/physiology , Sharks/anatomy & histology , Sharks/growth & development , Skull/anatomy & histology , Skull/growth & development , Animals , Animals, Newborn , Biological Evolution , Bite Force , Calcification, Physiologic/physiology , Feeding Behavior/physiology , Female , Hyoid Bone/anatomy & histology , Hyoid Bone/diagnostic imaging , Hyoid Bone/growth & development , Jaw/diagnostic imaging , Male , Mastication/physiology , Phylogeny , Skates, Fish/anatomy & histology , Skates, Fish/growth & development , Skull/diagnostic imaging , Temporomandibular Joint/anatomy & histology , Temporomandibular Joint/diagnostic imaging , Temporomandibular Joint/growth & development , Tomography, X-Ray Computed , Tooth/anatomy & histology , Tooth/growth & development
18.
J Hum Evol ; 43(2): 241-63, 2002 Aug.
Article in English | MEDLINE | ID: mdl-12160718

ABSTRACT

The study of the three-dimensional structure of trabecular bone and its relationship to locomotor behavioral differences across different primate taxa provides a potentially useful analytic tool for reconstructing the behavior of extinct taxa. The purpose of the current study is to quantify the three-dimensional architecture of trabecular bone in the femoral head of Omomys carteri and Shoshonius cooperi and to compare this structure to that of several extant strepsirrhine taxa. Bone volume fraction (BV/TV) and fabric anisotropy were quantified in three dimensions using serial high-resolution X-ray computed tomography scan data collected from one femoral head from each fossil taxon. Three cubic volumes of interest (VOI) were identified within the femoral head. The BV/TV was quantified by assessing the percentage of bone voxels within each VOI and the structural anisotropy was quantified using the star volume distribution method. The Omomys femur used here has a high BV/TV with the galagine-like pattern of decreasing BV/TV from the superior to the inferior half of the femoral head. The fabric structure, however, is more lorisine-like in being relatively isotropic throughout the femoral head. The trabecular structure in Omomys is unique in its mix of features and appears to be most similar overall to the lorisines, suggesting that Omomys engaged in a quadrupedal mode of locomotion. By contrast the Shoshonius specimen possesses a relatively uniform BV/TV across the head but displays the distinctly galagine-like pattern of increasing anisotropy moving inferiorly in the femoral head. Taken as a whole, the trabecular structure in Shoshonius appears to be most like that of the galagines and is consistent with that of either an occasional leaper-quadruped or a specialized leaper. Despite the overall similarities in the external postcranial anatomy of Omomys and Shoshonius, the results of this study indicate potentially important differences in the magnitude and orientation of the external loads at the hip joint, suggesting that these animals engaged in divergent locomotor behaviors.


Subject(s)
Femur Head/anatomy & histology , Fossils , Locomotion , Primates/anatomy & histology , Adaptation, Physiological , Animals , Anthropology, Physical , Posture
19.
J Hum Evol ; 43(1): 1-26, 2002 Jul.
Article in English | MEDLINE | ID: mdl-12098207

ABSTRACT

It has been hypothesized for over a hundred years that trabecular bone plays an important structural role in the musculoskeletal system of animals and that it responds dynamically to applied loads through growth. The objectives of this study are to quantify the three-dimensional structure of femoral head trabecular bone in a sample of extant strepsirrhines and to relate patterns of interspecific variation to locomotor behavioral differences. The bone volume fraction (BV/TV) and fabric anisotropy of trabecular bone in the femoral heads of Cheirogaleus major, Avahi laniger, Galago senegalensis, Galago alleni, Loris tardigradus, Otolemur crassicaudatus, and Perodicticus potto were quantified in three dimensions using serial high-resolution X-ray computed tomography scan data. A volume based method was used to quantify the structural anisotropy in three cubic samples located inside the central portion of the femoral head. Significant structural differences were found between the predominantly leaping galagines and indriids and the nonleaping lorisines and cheirogaleids. The leapers in general have relatively anisotropic trabecular bone. The galagines display a unique pattern of decreasing bone volume and increasing anisotropy moving from the superior to the inferior half of the femoral head. By contrast, the nonleaping taxa possess relatively uniform and isotropic bone throughout the femoral head. The differences in femoral head trabecular structure among these taxa seem to be related to locomotor behavioral differences, reflecting variation in the use and loading of the hip joint during normal locomotion.


Subject(s)
Femur Head/anatomy & histology , Hip Joint/anatomy & histology , Strepsirhini/anatomy & histology , Animals , Anisotropy , Biomechanical Phenomena , Bone Density , Fossils , Mathematics , Software , Species Specificity , Tomography, X-Ray Computed
SELECTION OF CITATIONS
SEARCH DETAIL
...