Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
1.
Environ Microbiol ; 24(9): 4449-4465, 2022 09.
Article in English | MEDLINE | ID: mdl-35642645

ABSTRACT

Exposure to particulate matter (PM), a major component of air pollution, is associated with exacerbation of chronic respiratory disease, and infectious diseases such as community-acquired pneumonia. Although PM can cause adverse health effects through direct damage to host cells, our previous study showed that PM can also impact bacterial behaviour by promoting in vivo colonization. In this study we describe the genetic mechanisms involved in the bacterial response to exposure to black carbon (BC), a constituent of PM found in most sources of air pollution. We show that Staphylococcus aureus strain USA300 LAC grown in BC prior to inoculation showed increased murine respiratory tract colonization and pulmonary invasion in vivo, as well as adhesion and invasion of human epithelial cells in vitro. Global transcriptional analysis showed that BC has a widespread effect on S. aureus transcriptional responses, altering the regulation of the major virulence gene regulators Sae and Agr and causing increased expression of genes encoding toxins, proteases and immune evasion factors. Together these data describe a previously unrecognized causative mechanism of air pollution-associated infection, in that exposure to BC can increase bacterial colonization and virulence factor expression by acting directly on the bacterium rather than via the host.


Subject(s)
Air Pollution , Staphylococcal Infections , Animals , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Carbon/metabolism , Gene Expression Regulation, Bacterial , Humans , Mice , Particulate Matter/metabolism , Peptide Hydrolases/genetics , Respiratory System/metabolism , Staphylococcal Infections/microbiology , Staphylococcus aureus/genetics , Staphylococcus aureus/metabolism , Virulence/genetics , Virulence Factors/metabolism
2.
Microbiology (Reading) ; 168(4)2022 04.
Article in English | MEDLINE | ID: mdl-35404222

ABSTRACT

Bacteria have evolved mechanisms which enable them to control intracellular concentrations of metals. In the case of transition metals, such as copper, iron and zinc, bacteria must ensure enough is available as a cofactor for enzymes whilst at the same time preventing the accumulation of excess concentrations, which can be toxic. Interestingly, metal homeostasis and resistance systems have been found to play important roles in virulence. This review will discuss the copper homeostasis and resistance systems in Staphylococcus aureus and Listeria monocytogenes and the implications that acquisition of additional copper resistance genes may have in these pathogens.


Subject(s)
Listeria monocytogenes , Staphylococcal Infections , Copper , Humans , Listeria monocytogenes/genetics , Staphylococcal Infections/microbiology , Staphylococcus aureus/genetics , Virulence/genetics
3.
PLoS One ; 17(3): e0265585, 2022.
Article in English | MEDLINE | ID: mdl-35358234

ABSTRACT

The extensive genetic variation in the lipooligosaccharide (LOS) core biosynthesis gene cluster has led to the development of a classification system; with 8 classes (I-VIII) for Campylobacter coli (C. coli) LOS region and with 23 classes (A-W) or four groups (1-4) for Campylobacter jejuni (C. jejuni) LOS region. PCR based LOS locus type identification for C. jejuni clinical isolates from a UK hospital as well as in silico LOS locus analysis for C. jejuni and C. coli genome sequences from GenBank was carried out to determine the frequencies of various LOS genotypes in C. jejuni and C. coli. Analysis of LOS gene content in 60 clinical C. jejuni isolates and 703 C. jejuni genome sequences revealed that class B (Group 1) was the most abundant LOS class in C. jejuni. The hierarchy of C. jejuni LOS group prevalence (group 1 > group 2 > group 3 > group 4) as well as the hierarchy of the frequency of C. jejuni LOS classes present within the group 1 (B > C > A > R > M > V), group 2 (H/P > O > E > W), group 3 (F > K > S) and group 4 (G > L) was identified. In silico analysis of LOS gene content in 564 C. coli genome sequences showed class III as the most abundant LOS locus type in C. coli. In silico analysis of LOS gene content also identified three novel LOS types of C. jejuni and previously unknown LOS biosynthesis genes in C. coli LOS locus types I, II, III, V and VIII. This study provides C. jejuni and C. coli LOS loci class frequencies in a smaller collection of C. jejuni clinical isolates as well as within the larger, worldwide database of C. jejuni and C. coli.


Subject(s)
Campylobacter coli , Campylobacter jejuni , Lipopolysaccharides , Multigene Family , Campylobacter coli/classification , Campylobacter coli/genetics , Campylobacter jejuni/classification , Campylobacter jejuni/genetics , Lipopolysaccharides/genetics
4.
mBio ; 12(6): e0256921, 2021 12 21.
Article in English | MEDLINE | ID: mdl-34696596

ABSTRACT

Streptococcus pneumoniae is an asymptomatic colonizer of the nasopharynx, but it is also one of the most important bacterial pathogens of humans, causing a wide range of mild to life-threatening diseases. The basis of the pneumococcal transition from a commensal to a parasitic lifestyle is not fully understood. We hypothesize that exposure to host catecholamine stress hormones is important for this transition. In this study, we demonstrated that pneumococci preexposed to a hormone released during stress, norepinephrine (NE), have an increased capacity to translocate from the nasopharynx into the lungs compared to untreated pneumococci. Examination of NE-treated pneumococci revealed major alterations in metabolic profiles, cell associations, capsule synthesis, and cell size. By systemically mutating all 12 two-component and 1 orphan regulatory systems, we also identified a unique genetic regulatory circuit involved in pneumococcal recognition and responsiveness to human stress hormones. IMPORTANCE Microbes acquire unique lifestyles under different environmental conditions. Although this is a widespread occurrence, our knowledge of the importance of various host signals and their impact on microbial behavior is not clear despite the therapeutic value of this knowledge. We discovered that catecholamine stress hormones are the host signals that trigger the passage of Streptococcus pneumoniae from a commensal to a parasitic state. We identify that stress hormone treatment of this microbe leads to reductions in cell size and capsule synthesis and renders it more able to migrate from the nasopharynx into the lungs in a mouse model of infection. The microbe requires the TCS09 protein for the recognition and processing of stress hormone signals. Our work has particular clinical significance as catecholamines are abundant in upper respiratory fluids as well as being administered therapeutically to reduce inflammation in ventilated patients, which may explain why intubation in the critically ill is a recognized risk factor for the development of pneumococcal pneumonia.


Subject(s)
Bacterial Translocation , Lung/microbiology , Pneumonia, Pneumococcal/microbiology , Streptococcus pneumoniae/physiology , Animals , Female , Humans , Mice , Nasopharynx/microbiology , Norepinephrine/metabolism , Pneumonia, Pneumococcal/metabolism , Pneumonia, Pneumococcal/physiopathology , Streptococcus pneumoniae/genetics , Streptococcus pneumoniae/growth & development , Stress, Physiological
5.
Front Microbiol ; 12: 705139, 2021.
Article in English | MEDLINE | ID: mdl-34394054

ABSTRACT

Phase variation (PV) is a phenomenon common to a variety of bacterial species for niche adaption and survival in challenging environments. Among Campylobacter species, PV depends on the presence of intergenic and intragenic hypermutable G/C homopolymeric tracts. The presence of phase-variable genes is of especial interest for species that cause foodborne or zoonotic infections in humans. PV influences the formation and the structure of the lipooligosaccharide, flagella, and capsule in Campylobacter species. PV of components of these molecules is potentially important during invasion of host tissues, spread within hosts and transmission between hosts. Motility is a critical phenotype that is potentially modulated by PV. Variation in the status of the phase-variable genes has been observed to occur during colonization in chickens and mouse infection models. Interestingly, PV is also involved in bacterial survival of attack by bacteriophages even during chicken colonization. This review aims to explore and discuss observations of PV during model and natural infections by Campylobacter species and how PV may affect strategies for fighting infections by this foodborne pathogen.

6.
BMC Vet Res ; 15(1): 468, 2019 Dec 21.
Article in English | MEDLINE | ID: mdl-31864369

ABSTRACT

BACKGROUND: Horses that undergo surgery for treatment of primary large colon disease have been reported to be at increased risk of developing recurrent colic episodes postoperatively. The reasons for this are currently unknown. The aim of the current study was to characterise the faecal microbiota of horses with colic signs associated with primary large colon lesions treated surgically and to compare the composition of their faecal microbiota to that of a control group of horses undergoing emergency orthopaedic treatment. Faecal samples were collected from horses in both groups on admission to hospital, during hospitalisation and following discharge from hospital for a total duration of 12 weeks. Additionally, colonic content samples were collected from surgical colic patients if pelvic flexure enterotomy was performed during laparotomy. A total of 12 samples were collected per horse. DNA was extracted from samples using a commercial kit. Amplicon mixtures were created by PCR amplification of the V1 - V2 regions of the bacterial 16S rRNA genes and submitted for sequencing using the Ion Torrent PGM next-generation sequencing system. Multivariate data analysis was used to characterise the faecal microbiota and to investigate differences between groups. RESULTS: Reduced species richness was evident in the colonic samples of the colic group compared to concurrent sampling of the faeces. Alpha and beta diversity differed significantly between the faecal and colonic microbiota with 304 significantly differentially abundant OTUs identified. Only 46 OTUs varied significantly between the colic and control group. There were no significant differences in alpha and beta diversity of faecal microbiota between colic and control horses at admission. However, this lack of significant differences between groups should be interpreted with caution due to a small sample size. CONCLUSIONS: The results of the current study suggest that faecal samples collected at hospital admission in colic cases may not accurately represent changes in upper gut microbiota in horses with colic due to large colon disease.


Subject(s)
Colic/veterinary , Colonic Diseases/veterinary , Feces/microbiology , Gastrointestinal Microbiome , Horse Diseases/surgery , Animals , Colic/microbiology , Colic/surgery , Colonic Diseases/microbiology , Colonic Diseases/surgery , Horse Diseases/microbiology , Horses , RNA, Ribosomal, 16S/analysis
7.
PeerJ ; 7: e6687, 2019.
Article in English | MEDLINE | ID: mdl-30976468

ABSTRACT

BACKGROUND: Periparturient mares are at increased risk of colic including large colon volvulus, which has a high mortality rate. Alterations in colonic microbiota related to either physiological or management changes, or both, that occur at this time have been suggested as potential causes for increased colic risk in this population of horses. Although the effect of management changes on the horse faecal microbiota has been investigated, limited work has been conducted to investigate changes in faecal microbiota structure and function in the periparturient period. The objectives of the current study were to investigate temporal stability of the faecal microbiota and volatile organic compounds (VOCs) of the faecal metabolome in periparturient mares. METHODS: Faecal samples were collected weekly from five pregnant mares from 3 weeks pre-foaling to 7 weeks post-foaling. The microbiome data was generated by PCR amplification and sequencing of the V1-V2 regions of the bacterial 16S rRNA genes, while the VOC profile was characterised using headspace solid phase microextraction gas chromatography mass spectrometry. RESULTS: The mare faecal microbiota was relatively stable over the periparturient period and most variation was associated with individual mares. A small number of operational taxonomic units were found to be significantly differentially abundant between samples collected before and after foaling. A total of 98 VOCs were identified. The total number of VOCs did not vary significantly between individual mares, weeks of sample collection and feeds available to the mares. Three VOCs (decane, 2-pentylfuran, and oct-2-ene) showed significant increase overtime on linear mixed effects modelling analysis. These results suggest that the mare faecal microbiota is structurally and functionally stable during the periparturient period. The findings also suggest that if changes in the gut microbiota are related to development of colic postpartum, altered risk may be due to inherent differences between individual mares. VOCs offer a cost-effective means of looking at the functional changes in the microbiome and warrant further investigation in mares at risk of colic.

8.
Sci Rep ; 8(1): 8510, 2018 05 31.
Article in English | MEDLINE | ID: mdl-29855517

ABSTRACT

Colic (abdominal pain) is a common cause of mortality in horses. Change in management of horses is associated with increased colic risk and seasonal patterns of increased risk have been identified. Shifts in gut microbiota composition in response to management change have been proposed as one potential underlying mechanism for colic. However, the intestinal microbiota in normal horses and how this varies over different seasons has not previously been investigated. In this study the faecal microbiota composition was studied over 12 months in a population of horses managed at pasture with minimal changes in management. We hypothesised that gut microbiota would be stable in this population over time. Faecal samples were collected every 14 days from 7 horses for 52 weeks and the faecal microbiota was characterised by next-generation sequencing of 16S rRNA genes. The faecal microbiota was dominated by members of the phylum Firmicutes and Bacteroidetes throughout. Season, supplementary forage and ambient weather conditions were significantly associated with change in the faecal microbiota composition. These results provide important baseline information demonstrating physiologic variation in the faecal microbiota of normal horses over a 12-month period without development of colic.


Subject(s)
Colic/veterinary , Feces/microbiology , Horse Diseases/microbiology , Horses/microbiology , Animal Feed/analysis , Animal Feed/microbiology , Animal Husbandry , Animals , Bacteroidetes/genetics , Bacteroidetes/isolation & purification , Colic/microbiology , Firmicutes/genetics , Firmicutes/isolation & purification , Gastrointestinal Microbiome , RNA, Ribosomal, 16S/genetics , RNA, Ribosomal, 16S/isolation & purification , Seasons
9.
J Microbiol Methods ; 146: 83-91, 2018 03.
Article in English | MEDLINE | ID: mdl-29428740

ABSTRACT

Chemotactic behaviour is an important part of the lifestyle of motile bacteria and enables cells to respond to various environmental stimuli. The Hard Agar Plug (HAP) method is used to study the chemotactic behaviour of bacteria, including the fastidious microaerophile Campylobacter jejuni, an intestinal pathogen of humans. However, the traditional HAP assay is not quantitative, is unsuitable for chemotaxis observation over short time periods and for the investigation of repellent taxis, and is prone to false-positive and -negative results. Here we report an accurate, rapid, and quantitative HAP-based chemotaxis assay, tHAP, for the investigation of bacterial chemotactic responses. The critical component of the new assay is the addition of triphenyltetrazolium chloride (TTC). Enzymatic reduction of TTC to TFP-Red (1, 3, 5-Triphenylformazan) enables colourimetric detection of actively metabolising bacterial cells. Quantitative assessment of chemotaxis is achieved by colourimetric measurement or viability count over a period of 10 min to 3 h. Using the tHAP assay, we observed the dose-responsive chemotactic motility of C. jejuni cells along different concentrations of attractants aspartate and serine. Importantly, we have also designed a competitive tHAP assay to differentiate between repellents and attractants and to identify chemoeffectors that do not activate metabolism. IMPORTANCE: The modified tHAP assay described here enables the exploration of the chemoresponse of Campylobacter jejuni towards chemorepellents, and catabolizable and non-catabolizable chemoattractants.


Subject(s)
Bacteriological Techniques/methods , Campylobacter jejuni/physiology , Chemotactic Factors/analysis , Chemotaxis/physiology , Bacterial Physiological Phenomena , Chemotactic Factors/physiology , Humans , Tetrazolium Salts
10.
Res Microbiol ; 169(2): 108-114, 2018.
Article in English | MEDLINE | ID: mdl-29113919

ABSTRACT

In this study, a LOV-based fluorescent reporter (light, oxygen, or voltage-sensing domains of phototropin), termed iLOV, was adapted for Campylobacter jejuni and used to investigate promoter activity via monitoring fluorescence intensity and to study the localisation of two chemotaxis proteins. The pC46 complementation vector contains coding sequence from cj0046, a C. jejuni NCTC11168 pseudo-gene and is used to integrate cloned genes onto the C. jejuni chromosome. The pC46 vector was used to construct plasmids containing iLOV, driven by three different C. jejuni constitutive promoters and plasmids containing transcriptional fusions of the iLOV reporter and two chemoreceptors, tlp5 and tlp8. Expression from the porA promoter, pporA, produced the highest fluorescence signals compared to pfdxA (intermediate level) and pmetK (lowest level). The cellular localisation pattern of transducer-like protein (Tlp) clusters, containing Tlp5 and Tlp8, was predominately polar, with Tlp5 positioned only at one and Tlp8 at both poles. Here, we demonstrate that a iLOV fluorescent reporter can be used as a promoter probe or as a gene fusion reporter in Campylobacter spp. This is a new system uniquely placed for studying Campylobacter spp., as it combines resistance to photobleaching and functionality under microaerobic conditions.


Subject(s)
Campylobacter jejuni/chemistry , Campylobacter jejuni/genetics , Luminescent Measurements/methods , Oxygen/metabolism , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Campylobacter jejuni/metabolism , Campylobacter jejuni/radiation effects , Fluorescence , Genes, Reporter , Light , Microscopy, Fluorescence , Plasmids/genetics , Plasmids/metabolism , Promoter Regions, Genetic
11.
PLoS One ; 12(8): e0182833, 2017.
Article in English | MEDLINE | ID: mdl-28841671

ABSTRACT

BACKGROUND: While a subgroup of patients with exacerbations of chronic obstructive pulmonary disease (COPD) clearly benefit from antibiotics, their identification remains challenging. We hypothesised that selective assessment of the balance between the two dominant bacterial groups (Gammaproteobacteria (G) and Firmicutes (F)) in COPD sputum samples might reveal a subgroup with a bacterial community structure change at exacerbation that was restored to baseline on recovery and potentially reflects effective antibiotic treatment. METHODS: Phylogenetically specific 16S rRNA genes were determined by quantitative real time PCR to derive a G:F ratio in serial sputum samples from 66 extensively-phenotyped COPD exacerbation episodes. RESULTS: Cluster analysis based on Euclidean distance measures, generated across the 4 visit times (stable and exacerbation day: 0,14 and 42) for the 66 exacerbation episodes, revealed three subgroups designated HG, HF, and GF reflecting predominance or equivalence of the two target bacterial groups. While the other subgroups showed no change at exacerbation, the HG cluster (n = 20) was characterized by G:F ratios that increased significantly at exacerbation and returned to baseline on recovery (p<0.00001); ratios in the HG group also correlated positively with inflammatory markers and negatively with FEV1. At exacerbation G:F showed a significant receiver-operator-characteristic curve to identify the HG subgroup (AUC 0.90, p<0.0001). CONCLUSIONS: The G:F ratio at exacerbation can be determined on a timescale compatible with decisions regarding clinical management. We propose that the G:F ratio has potential for use as a biomarker enabling selective use of antibiotics in COPD exacerbations and hence warrants further clinical evaluation.


Subject(s)
Anti-Bacterial Agents/therapeutic use , Microbiota , Polymerase Chain Reaction/methods , Pulmonary Disease, Chronic Obstructive/pathology , Sputum/microbiology , Aged , Female , Humans , Male , Pulmonary Disease, Chronic Obstructive/drug therapy , Pulmonary Disease, Chronic Obstructive/microbiology
12.
Environ Microbiol ; 19(5): 1868-1880, 2017 05.
Article in English | MEDLINE | ID: mdl-28195384

ABSTRACT

Air pollution is the world's largest single environmental health risk (WHO). Particulate matter such as black carbon is one of the main components of air pollution. The effects of particulate matter on human health are well established however the effects on bacteria, organisms central to ecosystems in humans and in the natural environment, are poorly understood. We report here for the first time that black carbon drastically changes the development of bacterial biofilms, key aspects of bacterial colonisation and survival. Our data show that exposure to black carbon induces structural, compositional and functional changes in the biofilms of both S. pneumoniae and S. aureus. Importantly, the tolerance of the biofilms to multiple antibiotics and proteolytic degradation is significantly affected. Additionally, our results show that black carbon impacts bacterial colonisation in vivo. In a mouse nasopharyngeal colonisation model, black carbon caused S. pneumoniae to spread from the nasopharynx to the lungs, which is essential for subsequent infection. Therefore our study highlights that air pollution has a significant effect on bacteria that has been largely overlooked. Consequently these findings have important implications concerning the impact of air pollution on human health and bacterial ecosystems worldwide.


Subject(s)
Air Pollution/adverse effects , Anti-Bacterial Agents/pharmacology , Biofilms/growth & development , Drug Resistance, Multiple, Bacterial/drug effects , Methicillin-Resistant Staphylococcus aureus/growth & development , Soot/pharmacology , Streptococcus pneumoniae/growth & development , Animals , Biofilms/drug effects , Humans , Lung/microbiology , Methicillin-Resistant Staphylococcus aureus/drug effects , Mice , Nasopharynx/microbiology , Pneumococcal Infections/drug therapy , Pneumococcal Infections/microbiology , Proteolysis/drug effects , Staphylococcal Infections/drug therapy , Staphylococcal Infections/microbiology , Streptococcus pneumoniae/drug effects
13.
Nucleic Acids Res ; 40(13): 5876-89, 2012 Jul.
Article in English | MEDLINE | ID: mdl-22434884

ABSTRACT

Phase variation of surface structures occurs in diverse bacterial species due to stochastic, high frequency, reversible mutations. Multiple genes of Campylobacter jejuni are subject to phase variable gene expression due to mutations in polyC/G tracts. A modal length of nine repeats was detected for polyC/G tracts within C. jejuni genomes. Switching rates for these tracts were measured using chromosomally-located reporter constructs and high rates were observed for cj1139 (G8) and cj0031 (G9). Alteration of the cj1139 tract from G8 to G11 increased mutability 10-fold and changed the mutational pattern from predominantly insertions to mainly deletions. Using a multiplex PCR, major changes were detected in 'on/off' status for some phase variable genes during passage of C. jejuni in chickens. Utilization of observed switching rates in a stochastic, theoretical model of phase variation demonstrated links between mutability and genetic diversity but could not replicate observed population diversity. We propose that modal repeat numbers have evolved in C. jejuni genomes due to molecular drivers associated with the mutational patterns of these polyC/G repeats, rather than by selection for particular switching rates, and that factors other than mutational drift are responsible for generating genetic diversity during host colonization by this bacterial pathogen.


Subject(s)
Campylobacter jejuni/genetics , Mutation Rate , Mutation , Animals , Base Sequence , Campylobacter jejuni/growth & development , Chickens/microbiology , Conserved Sequence , Genes, Bacterial , Genome, Bacterial , Genotype , Poly C/chemistry , Poly G/chemistry
14.
J Bacteriol ; 192(17): 4425-35, 2010 Sep.
Article in English | MEDLINE | ID: mdl-20585060

ABSTRACT

The ferric enterobactin (FeEnt) receptor CfrA is present in the majority of Campylobacter jejuni isolates and is responsible for high-affinity iron acquisition. Our recent work and that of others strongly suggested the existence of another FeEnt uptake system in Campylobacter. Here we have identified and characterized a new FeEnt receptor (designated CfrB) using both in vitro and in vivo systems. CfrB, a homolog of C. jejuni NCTC 11168 Cj0444, shares approximately 34% of amino acid identity with CfrA. Alignment of complete CfrB sequences showed that the CfrB is highly conserved in Campylobacter. Immunoblotting analysis using CfrB-specific antiserum demonstrated that CfrB was dramatically induced under iron-restricted conditions and was produced in the majority of Campylobacter coli (41 out of 45) and in some C. jejuni (8 out of 32) primary strains from various sources and from geographically diverse areas. All of the CfrB-producing C. coli strains also produced CfrA, which was rarely observed in the tested C. jejuni strains. Isogenic cfrB, cfrA, and cfrA cfrB double mutants were constructed in 43 diverse Campylobacter strains. Growth promotion assays using these mutants demonstrated that CfrB has a major role in FeEnt iron acquisition in C. coli. Chicken colonization experiments indicated that inactivation of the cfrB gene alone greatly reduced and even abolished Campylobacter colonization of the intestines. A growth assay using CfrB-specific antiserum strongly suggested that specific CfrB antibodies could block the function of CfrB and diminish FeEnt-mediated growth promotion under iron-restricted conditions. Together, this work reveals the complexity of FeEnt systems in the two closely related Campylobacter species and demonstrates the important role of the new FeEnt receptor CfrB in Campylobacter iron acquisition and in vivo colonization.


Subject(s)
Bacterial Outer Membrane Proteins , Campylobacter coli/metabolism , Campylobacter jejuni/metabolism , Carrier Proteins , Enterobactin/metabolism , Receptors, Cell Surface , Animals , Bacterial Outer Membrane Proteins/chemistry , Bacterial Outer Membrane Proteins/genetics , Bacterial Outer Membrane Proteins/metabolism , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Campylobacter coli/genetics , Campylobacter coli/growth & development , Campylobacter jejuni/genetics , Campylobacter jejuni/growth & development , Carrier Proteins/chemistry , Carrier Proteins/genetics , Carrier Proteins/metabolism , Cattle , Chickens/microbiology , Culture Media , Humans , Immunoblotting , Intestines/microbiology , Iron/metabolism , Molecular Sequence Data , Mutation , Receptors, Cell Surface/chemistry , Receptors, Cell Surface/genetics , Receptors, Cell Surface/metabolism , Sequence Analysis, DNA , Species Specificity
15.
Mol Microbiol ; 75(3): 710-30, 2010 Feb.
Article in English | MEDLINE | ID: mdl-20025667

ABSTRACT

Campylobacter jejuni is a highly motile bacterium that responds via chemotaxis to environmental stimuli to migrate towards favourable conditions. Previous in silico analysis of the C. jejuni strain NCTC11168 genome sequence identified 10 open reading frames, tlp1-10, that encode putative chemosensory receptors. We describe the characterization of the role and specificity of the Tlp1 chemoreceptor (Cj1506c). In vitro and in vivo models were used to determine if Tlp1 had a role in host colonization. The tlp1(-) isogenic mutant was more adherent in cell culture, however, showed reduced colonization ability in chickens. Specific interactions between the purified sensory domain of Tlp1 and l-aspartate were identified using an amino acid array and saturation transfer difference nuclear magnetic resonance spectroscopy. Chemotaxis assays showed differences between migration of wild-type C. jejuni cells and that of a tlp1(-) isogenic mutant, specifically towards aspartate. Furthermore, using yeast two-hybrid and three-hybrid systems for analysis of protein-protein interactions, the cytoplasmic signalling domain of Tlp1 was found to preferentially interact with CheV, rather than the CheW homologue of the chemotaxis signalling pathway; this interaction was confirmed using immune precipitation assays. This is the first identification of an aspartate receptor in bacteria other than Escherichia coli and Salmonella enterica serovar Typhimurium.


Subject(s)
Bacterial Proteins/metabolism , Campylobacter jejuni/physiology , Receptors, Amino Acid/metabolism , Animals , Aspartic Acid/metabolism , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Campylobacter jejuni/genetics , Campylobacter jejuni/metabolism , Chemotaxis/genetics , Chickens/microbiology , Ligands , Protein Structure, Tertiary , Receptors, Amino Acid/chemistry , Receptors, Amino Acid/genetics
16.
Microbiology (Reading) ; 155(Pt 10): 3157-3165, 2009 Oct.
Article in English | MEDLINE | ID: mdl-19696110

ABSTRACT

Campylobacter requires iron for successful colonization of the host. In the last 7 years, a wealth of data has been generated allowing detailed molecular characterization of Campylobacter iron-uptake systems. Several exogenous siderophores have been identified as sources of ferric iron for Campylobacter. Ferri-enterochelin uptake requires both the outer-membrane receptor protein CfrA and the inner-membrane ABC transporter system CeuBCDE. Ferrichrome has been shown to support growth of some Campylobacter jejuni strains and the presence of homologues of Escherichia coli fhuABD genes was proposed; the Cj1658-Cj1663 system appears to be involved in the uptake of ferri-rhodotorulic acid. In addition to siderophores, the importance of host iron sources was highlighted by recent studies demonstrating that C. jejuni can exploit haem compounds and the transferrins using ChuABCDZ and Cj0173c-Cj0178, respectively. An additional putative receptor, Cj0444, present in some, but not all, strains has not yet been characterized. Following diffusion through the outer membrane, inner-membrane transport of ferrous iron can occur via the FeoB protein. While it may be assumed that all systems are not essential, there is growing evidence supporting the need for multiple iron-uptake systems for successful host colonization by Campylobacter. In light of this, comparative molecular characterization of iron systems in all Campylobacter strains is necessary to gain further insight into the pathogenesis of members of this genus.


Subject(s)
Campylobacter/metabolism , Iron/metabolism , Membrane Transport Proteins/metabolism , Biological Transport
17.
J Bacteriol ; 191(7): 2392-9, 2009 Apr.
Article in English | MEDLINE | ID: mdl-19181814

ABSTRACT

Deletion of the lipooligosaccharide biosynthesis region (Cj1132c to Cj1152c) from the genome of Campylobacter jejuni NCTC11168 shows that the core is not required for viability. The mutant was attenuated for growth and has increased sensitivity to antibiotics and detergents. Natural transformation and invasion of cultured host cells was abolished.


Subject(s)
Bacterial Proteins/genetics , Campylobacter jejuni/genetics , Gene Deletion , Lipopolysaccharides/biosynthesis , Microbial Viability , Multigene Family , Bacterial Proteins/metabolism , Biosynthetic Pathways , Campylobacter jejuni/chemistry , Campylobacter jejuni/growth & development , Campylobacter jejuni/metabolism , Lipopolysaccharides/chemistry , Mutation
18.
J Bacteriol ; 190(6): 1900-11, 2008 Mar.
Article in English | MEDLINE | ID: mdl-18203832

ABSTRACT

Campylobacter jejuni NCTC 11168 was capable of growth to levels comparable with FeSO4 in defined iron-limited medium (minimal essential medium alpha [MEMalpha]) containing ferrilactoferrin, ferritransferrin, or ferri-ovotransferrin. Iron was internalized in a contact-dependent manner, with 94% of cell-associated radioactivity from either 55Fe-loaded transferrin or lactoferrin associated with the soluble cell fraction. Partitioning the iron source away from bacteria significantly decreased cellular growth. Excess cold transferrin or lactoferrin in cultures containing 55Fe-loaded transferrin or lactoferrin resulted in reduced levels of 55Fe uptake. Growth of C. jejuni in the presence of ferri- and an excess of apoprotein reduced overall levels of growth. Following incubation of cells in the presence of ferrilactoferrin, lactoferrin became associated with the cell surface; binding levels were higher after growth under iron limitation. A strain carrying a mutation in the cj0178 gene from the iron uptake system Cj0173c-Cj0178 demonstrated significantly reduced growth promotion in the presence of ferrilactoferrin in MEMalpha compared to wild type but was not affected in the presence of heme. Moreover, this mutant acquired less 55Fe than wild type when incubated with 55Fe-loaded protein and bound less lactoferrin. Complementation restored the wild-type phenotype when cells were grown with ferrilactoferrin. A mutant in the ABC transporter system permease gene (cj0174c) showed a small but significant growth reduction. The cj0176c-cj0177 intergenic region contains two separate Fur-regulated iron-repressible promoters. This is the first demonstration that C. jejuni is capable of acquiring iron from members of the transferrin protein family, and our data indicate a role for Cj0178 in this process.


Subject(s)
Campylobacter jejuni/metabolism , Iron/metabolism , Lactoferrin/metabolism , Transferrin/metabolism , Bacterial Proteins/metabolism , Campylobacter jejuni/genetics , Campylobacter jejuni/growth & development , Cell Division/drug effects , Conalbumin/metabolism , Conalbumin/pharmacology , Electrophoretic Mobility Shift Assay , Gene Expression Regulation, Bacterial , Genetic Complementation Test , Humans , Iron Radioisotopes , Lactoferrin/pharmacology , Mutation , Protein Binding , Transferrin/pharmacology
19.
J Bacteriol ; 188(22): 7862-75, 2006 Nov.
Article in English | MEDLINE | ID: mdl-16980451

ABSTRACT

A putative iron- and Fur-regulated hemin uptake gene cluster, composed of the transport genes chuABCD and a putative heme oxygenase gene (Cj1613c), has been identified in Campylobacter jejuni NCTC 11168. Mutation of chuA or Cj1613c leads to an inability to grow in the presence of hemin or hemoglobin as a sole source of iron. Mutation of chuB, -C, or -D only partially attenuates growth where hemin is the sole iron source, suggesting that an additional inner membrane (IM) ABC (ATP-binding cassette) transport system(s) for heme is present in C. jejuni. Genotyping experiments revealed that Cj1613c is highly conserved in 32 clinical isolates. One strain did not possess chuC, though it was still capable of using hemin/hemoglobin as a sole iron source, supporting the hypothesis that additional IM transport genes are present. In two other strains, sequence variations within the gene cluster were apparent and may account for an observed negative heme utilization phenotype. Analysis of promoter activity within the Cj1613c-chuA intergenic spacer region revealed chuABCD and Cj1613c are expressed from separate iron-repressed promoters and that this region also specifically binds purified recombinant Fur(Cj) in gel retardation studies. Absorbance spectroscopy of purified recombinant His(6)-Cj1613c revealed a 1:1 heme:His(6)-Cj1613c binding ratio. The complex was oxidatively degraded in the presence of ascorbic acid as the electron donor, indicating that the Cj1613c gene product functions as a heme oxygenase. In conclusion, we confirm the involvement of Cj1613c and ChuABCD in heme/hemoglobin utilization in C. jejuni.


Subject(s)
Bacterial Proteins/metabolism , Campylobacter jejuni/metabolism , Heme Oxygenase (Decyclizing)/metabolism , Heme/metabolism , Bacterial Proteins/genetics , Biological Transport/genetics , Campylobacter Infections/microbiology , Campylobacter jejuni/genetics , Campylobacter jejuni/growth & development , Culture Media , Heme Oxygenase (Decyclizing)/genetics , Hemin , Hemoglobins , Humans , Multigene Family , Oxidation-Reduction , Phylogeny , Promoter Regions, Genetic/genetics , Receptors, Cell Surface/genetics , Receptors, Cell Surface/metabolism
20.
J Bacteriol ; 187(11): 3662-70, 2005 Jun.
Article in English | MEDLINE | ID: mdl-15901688

ABSTRACT

Two-component regulatory systems play a major role in the physiological response of bacteria to environmental stimuli. Such systems are composed of a sensor histidine kinase and a response regulator whose ultimate function is to affect the expression of target genes. Response regulator mutants of Campylobacter jejuni strain F38011 were screened for sensitivity to sodium deoxycholate. A mutation in Cj0643, which encodes a response regulator with no obvious cognate histidine kinase, resulted in an absence of growth on plates containing a subinhibitory concentration of sodium deoxcholate (1%, wt/vol). In broth cultures containing 0.05% (wt/vol) sodium deoxycholate, growth of the mutant was significantly inhibited compared to growth of the C. jejuni F38011 wild-type strain. Complementation of the C. jejuni cbrR mutant in trans restored growth in both broth and plate cultures supplemented with sodium deoxycholate. Based on the phenotype displayed by its mutation, we designated the gene corresponding to Cj0643 as cbrR (Campylobacter bile resistance regulator). While the MICs of a variety of bile salts and other detergents for the C. jejuni cbrR mutant were lower, no difference was noted in its sensitivity to antibiotics or osmolarity. Finally, chicken colonization studies demonstrated that the C. jejuni cbrR mutant had a reduced ability to colonize compared to the wild-type strain. These data support previous findings that bile resistance contributes to colonization of chickens and establish that the response regulator, CbrR, modulates resistance to bile salts in C. jejuni.


Subject(s)
Bacterial Proteins/genetics , Campylobacter jejuni/genetics , Chickens/microbiology , Deoxycholic Acid/pharmacology , Detergents/pharmacology , Poultry Diseases/microbiology , Amino Acid Sequence , Animals , Bacterial Proteins/metabolism , Bile Acids and Salts/pharmacology , Campylobacter jejuni/drug effects , Campylobacter jejuni/growth & development , Drug Resistance, Bacterial/genetics , Microbial Sensitivity Tests , Molecular Sequence Data , Mutation , Phenotype , Protein Structure, Tertiary
SELECTION OF CITATIONS
SEARCH DETAIL
...