Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 15(1): 937, 2024 Jan 31.
Article in English | MEDLINE | ID: mdl-38297033

ABSTRACT

Malaria poses an enormous threat to human health. With ever increasing resistance to currently deployed drugs, breakthrough compounds with novel mechanisms of action are urgently needed. Here, we explore pyrimidine-based sulfonamides as a new low molecular weight inhibitor class with drug-like physical parameters and a synthetically accessible scaffold. We show that the exemplar, OSM-S-106, has potent activity against parasite cultures, low mammalian cell toxicity and low propensity for resistance development. In vitro evolution of resistance using a slow ramp-up approach pointed to the Plasmodium falciparum cytoplasmic asparaginyl-tRNA synthetase (PfAsnRS) as the target, consistent with our finding that OSM-S-106 inhibits protein translation and activates the amino acid starvation response. Targeted mass spectrometry confirms that OSM-S-106 is a pro-inhibitor and that inhibition of PfAsnRS occurs via enzyme-mediated production of an Asn-OSM-S-106 adduct. Human AsnRS is much less susceptible to this reaction hijacking mechanism. X-ray crystallographic studies of human AsnRS in complex with inhibitor adducts and docking of pro-inhibitors into a model of Asn-tRNA-bound PfAsnRS provide insights into the structure-activity relationship and the selectivity mechanism.


Subject(s)
Antimalarials , Aspartate-tRNA Ligase , Animals , Humans , Plasmodium falciparum/genetics , Asparagine/metabolism , Aspartate-tRNA Ligase/genetics , RNA, Transfer, Amino Acyl/metabolism , Antimalarials/pharmacology , Mammals/genetics
2.
Sci Rep ; 13(1): 22553, 2023 12 18.
Article in English | MEDLINE | ID: mdl-38110522

ABSTRACT

The use of megakaryoblastic leukemia MEG-01 cells can help reveal the mechanisms of thrombopoiesis. However, conventional in vitro activation of platelet release from MEG-01 cells requires thrombopoietin, which is costly. Here, we aim to develop a more straightforward and affordable method. Synchronization of the MEG-01 cells was initially performed using serum-free culture, followed by spontaneous cell differentiation in the presence of serum. Different stages of megakaryoblast differentiation were classified based on cell morphology, DNA content, and cell cycle. The MEG-01 cells released platelet-like particles at a level comparable to that of the thrombopoietin-activated MEG-01 cells. The platelet-like particles were distinguishable from PLP-derived extracellular vesicles and could express P-selectin following ADP activation. Importantly, the platelet-like particles induced fibrin clotting in vitro using platelet-poor plasma. Therefore, this thrombopoietin-independent cell synchronization method is an effective and straightforward method for studying megakaryopoiesis and thrombopoiesis.


Subject(s)
Megakaryocytes , Thrombopoietin , Megakaryocytes/metabolism , Thrombopoietin/pharmacology , Thrombopoietin/metabolism , Megakaryocyte Progenitor Cells , Blood Platelets , Thrombopoiesis
3.
Res Sq ; 2023 Jul 27.
Article in English | MEDLINE | ID: mdl-37546892

ABSTRACT

Malaria poses an enormous threat to human health. With ever increasing resistance to currently deployed drugs, breakthrough compounds with novel mechanisms of action are urgently needed. Here, we explore pyrimidine-based sulfonamides as a new low molecular weight inhibitor class with drug-like physical parameters and a synthetically accessible scaffold. We show that the exemplar, OSM-S-106, has potent activity against parasite cultures, low mammalian cell toxicity and low propensity for resistance development. In vitro evolution of resistance using a slow ramp-up approach pointed to the Plasmodium falciparum cytoplasmic asparaginyl tRNA synthetase (PfAsnRS) as the target, consistent with our finding that OSM-S-106 inhibits protein translation and activates the amino acid starvation response. Targeted mass spectrometry confirms that OSM-S-106 is a pro-inhibitor and that inhibition of PfAsnRS occurs via enzyme-mediated production of an Asn-OSM-S-106 adduct. Human AsnRS is much less susceptible to this reaction hijacking mechanism. X-ray crystallographic studies of human AsnRS in complex with inhibitor adducts and docking of pro-inhibitors into a model of Asn-tRNA-bound PfAsnRS provide insights into the structure activity relationship and the selectivity mechanism.

5.
Exp Hematol ; 121: 18-29.e2, 2023 05.
Article in English | MEDLINE | ID: mdl-36801436

ABSTRACT

Glucose-6-phosphate dehydrogenase (G6PD) deficiency impairs cellular processes under oxidative stress. Individuals with severe G6PD deficiency still produce sufficient numbers of erythrocytes. Nevertheless, the G6PD independence of erythropoiesis remains questionable. This study elucidates the effects of G6PD deficiency on the generation of human erythrocytes. Peripheral blood-derived CD34-positive hematopoietic stem and progenitor cells (HSPCs) of human subjects with normal, moderate, and severe G6PD activities were cultured in two distinct phases: erythroid commitment and terminal differentiation. Regardless of G6PD deficiency, HSPCs were able to proliferate and differentiate into mature erythrocytes. There was no impairment in erythroid enucleation among the subjects with G6PD deficiency. To our knowledge, this study is the first report of effective erythropoiesis independent of G6PD deficiency. The evidence firmly indicates that the population with the G6PD variant could produce erythrocytes to an extent similar to that in healthy individuals.


Subject(s)
Glucosephosphate Dehydrogenase Deficiency , Glucosephosphate Dehydrogenase , Humans , Cell Differentiation , Erythrocytes , Erythropoiesis , Glucosephosphate Dehydrogenase/genetics , Glucosephosphate Dehydrogenase Deficiency/genetics
6.
J Infect Dis ; 225(7): 1238-1247, 2022 04 01.
Article in English | MEDLINE | ID: mdl-34558618

ABSTRACT

BACKGROUND: Protection against Plasmodium falciparum is observed in a population deficient in glucose-6-phosphate dehydrogenase (G6PD), particularly in African and Mediterranean regions. However, such protection remains unknown among G6PD-deficient individuals in Southeast Asia. METHODS: In this study, we assessed the invasion and maturation of P falciparum K1 in a culture of erythrocytes isolated from Thai subjects carrying Viangchan (871G > A) and Mahidol (487G > A). RESULTS: We found that the parasites lost their ability to invade hemizygous and homozygous G6PD-deficient erythrocytes of Viangchan and Mahidol variants in the second and third cycles of intraerythrocytic development. It is interesting to note that P falciparum parasites selectively grew in erythrocytes from hemi- and homozygous genotypes with normal G6PD activity. Moreover, externalization of phosphatidylserine upon P falciparum infection was significantly increased only in Viangchan hemizygous variant cells. CONCLUSIONS: This study is the first to show that blockage of invasion in long-term culture and potentially enhanced removal of parasitized erythrocytes were observed for the first time in erythrocytes from Viangchan and Mahidol G6PD-deficient individuals.


Subject(s)
Glucosephosphate Dehydrogenase Deficiency , Malaria, Falciparum , Erythrocytes/parasitology , Glucosephosphate Dehydrogenase/genetics , Glucosephosphate Dehydrogenase Deficiency/genetics , Humans , Plasmodium falciparum/genetics
7.
Malar J ; 19(1): 285, 2020 Aug 10.
Article in English | MEDLINE | ID: mdl-32778117

ABSTRACT

BACKGROUND: Extracellular vesicles (EVs) have been broadly studied in malaria for nearly a decade. These vesicles carry various functional biomolecules including RNA families such as microRNAs (miRNA). These EVs-derived microRNAs have numerous roles in host-parasite interactions and are considered promising biomarkers for disease severity. However, this field lacks clinical studies of malaria-infected samples. In this study, EV specific miRNAs were isolated from the plasma of patients from Thailand infected with Plasmodium vivax and Plasmodium falciparum. In addition, it is postulated that these miRNAs were differentially expressed in these groups of patients and had a role in disease onset through the regulation of specific target genes. METHODS: EVs were purified from the plasma of Thai P. vivax-infected patients (n = 19), P. falciparum-infected patients (n = 18) and uninfected individuals (n = 20). EV-derived miRNAs were then prepared and abundance of hsa-miR-15b-5p, hsa-miR-16-5p, hsa-let-7a-5p and hsa-miR-150-5p was assessed in these samples. Quantitative polymerase chain reaction was performed, and relative expression of each miRNA was calculated using hsa-miR-451a as endogenous control. Then, the targets of up-regulated miRNAs and relevant pathways were predicted by using bioinformatics. Receiver Operating Characteristic with Area under the Curve (AUC) was then calculated to assess their diagnostic potential. RESULTS: The relative expression of hsa-miR-150-5p and hsa-miR-15b-5p was higher in P. vivax-infected patients compared to uninfected individuals, but hsa-let-7a-5p was up-regulated in both P. vivax-infected patients and P. falciparum-infected patients. Bioinformatic analysis revealed that these miRNAs might regulate genes involved in the malaria pathway including the adherens junction and the transforming growth factor-ß pathways. All up-regulated miRNAs could potentially be used as disease biomarkers as determined by AUC; however, the sensitivity and specificity require further investigation. CONCLUSION: An upregulation of hsa-miR-150-5p and hsa-miR-15b-5p was observed in P. vivax-infected patients while hsa-let-7a-5p was up-regulated in both P. vivax-infected and P. falciparum-infected patients. These findings will require further validation in larger cohort groups of malaria patients to fully understand the contribution of these EVs miRNAs to malaria detection and biology.


Subject(s)
Extracellular Vesicles/metabolism , Malaria, Falciparum/physiopathology , Malaria, Vivax/physiopathology , MicroRNAs/blood , Adult , Female , Humans , Male , Middle Aged , Plasmodium falciparum/isolation & purification , Plasmodium vivax/isolation & purification , Thailand , Young Adult
8.
Malar J ; 19(1): 74, 2020 Feb 18.
Article in English | MEDLINE | ID: mdl-32070344

ABSTRACT

BACKGROUND: Gold standard microscopic examination of Plasmodium falciparum intraerythrocytic stage remains an important process for staging and enumerating parasitized erythrocytes in culture; however, microscopy is laborious and its accuracy is dependent upon the skill of the examiner. METHODS: In this study, ViSafe Green (VSG), which is a nucleic acid-binding fluorescent dye, was used for assessing in vitro development of P. falciparum using flow cytometry. RESULTS: Fluorescence intensity of VSG was found to depend on the developmental stage of parasites. Specifically, multiple-nuclei-containing schizonts were observed in the VSGhigh population, and growing trophozoites and ring-shaped forms were observed in the VSGintermediate and VSGlow populations. The efficacy of VSG-based assay was found to be comparable to the microscopic examination method, and it demonstrated an ability to detect as low as 0.001% of the parasitaemia estimated by Giemsa staining. Moreover, when applying VSG for anti-malarial drug test, it was able to observe the growth inhibitory effect of dihydroartemisinin, the front-line drug for malaria therapy. CONCLUSIONS: Taken together, the results of this study suggest the VSG-based flow cytometric assay to be a simple and reliable assay for assessing P. falciparum malaria development in vitro.


Subject(s)
Erythrocytes/parasitology , Flow Cytometry/methods , Fluorescent Dyes/chemistry , Plasmodium falciparum/growth & development , Staining and Labeling/instrumentation
SELECTION OF CITATIONS
SEARCH DETAIL
...