Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Neuropsychologia ; 143: 107467, 2020 06.
Article in English | MEDLINE | ID: mdl-32305299

ABSTRACT

A recent dual-stream model of language processing proposed that the postero-dorsal stream performs predictive sequential processing of linguistic information via hierarchically organized internal models. However, it remains unexplored whether the prosodic segmentation of linguistic information involves predictive processes. Here, we addressed this question by investigating the processing of word stress, a major component of speech segmentation, using probabilistic repetition suppression (RS) modulation as a marker of predictive processing. In an event-related acoustic fMRI RS paradigm, we presented pairs of pseudowords having the same (Rep) or different (Alt) stress patterns, in blocks with varying Rep and Alt trial probabilities. We found that the BOLD signal was significantly lower for Rep than for Alt trials, indicating RS in the posterior and middle superior temporal gyrus (STG) bilaterally, and in the anterior STG in the left hemisphere. Importantly, the magnitude of RS was modulated by repetition probability in the posterior and middle STG. These results reveal the predictive processing of word stress in the STG areas and raise the possibility that words stress processing is related to the dorsal "where" auditory stream.


Subject(s)
Speech Perception , Speech , Brain Mapping , Humans , Magnetic Resonance Imaging , Motivation
2.
Magn Reson Med ; 83(6): 2173-2184, 2020 06.
Article in English | MEDLINE | ID: mdl-31840300

ABSTRACT

PURPOSE: In diffusion MRI, the actual b-value played out on the scanner may deviate from the nominal value due to magnetic field imperfections. A simple image-based correction method for this problem is presented. METHODS: The apparent diffusion constant (ADC) of a water phantom was measured voxel-wise along 64 diffusion directions at b = 1000 s/mm2 . The true diffusion constant of water was estimated, considering the phantom temperature. A voxel-wise correction factor, providing an effective b-value including any magnetic field deviations, was determined for each diffusion direction by relating the measured ADC to the true diffusion constant. To test the method, the measured b-value map was used to calculate the corrected voxel-wise ADC for additionally acquired diffusion data sets on the same water phantom and data sets acquired on a small water phantom at three different positions. Diffusion tensor was estimated by applying the measured b-value map to phantom and in vivo data sets. RESULTS: The b-value-corrected ADC maps of the phantom showed the expected spatial uniformity as well as a marked improvement in consistency across diffusion directions. The b-value correction for the brain data resulted in a 5.8% and 5.5% decrease in mean diffusivity and angular differences of the primary diffusion direction of 2.71° and 0.73° inside gray and white matter, respectively. CONCLUSION: The actual b-value deviates significantly from its nominal setting, leading to a spatially variable error in the common diffusion outcome measures. The suggested method measures and corrects these artifacts.


Subject(s)
Artifacts , Diffusion Magnetic Resonance Imaging , Diffusion , Phantoms, Imaging , Reproducibility of Results
3.
Sci Rep ; 9(1): 15270, 2019 10 24.
Article in English | MEDLINE | ID: mdl-31649271

ABSTRACT

Resting-state networks are spatially distributed, functionally connected brain regions. Studying these networks gives us information about the large-scale functional organization of the brain and alternations in these networks are considered to play a role in a wide range of neurological conditions and aging. To describe resting-state networks in dogs, we measured 22 awake, unrestrained individuals of both sexes and carried out group-level spatial independent component analysis to explore whole-brain connectivity patterns. In this exploratory study, using resting-state functional magnetic resonance imaging (rs-fMRI), we found several such networks: a network involving prefrontal, anterior cingulate, posterior cingulate and hippocampal regions; sensorimotor (SMN), auditory (AUD), frontal (FRO), cerebellar (CER) and striatal networks. The network containing posterior cingulate regions, similarly to Primates, but unlike previous studies in dogs, showed antero-posterior connectedness with involvement of hippocampal and lateral temporal regions. The results give insight into the resting-state networks of awake animals from a taxon beyond rodents through a non-invasive method.


Subject(s)
Brain/diagnostic imaging , Functional Neuroimaging/veterinary , Nerve Net/diagnostic imaging , Animals , Brain Mapping , Dogs , Female , Magnetic Resonance Imaging/veterinary , Male , Rest/physiology
4.
Magn Reson Med ; 82(3): 1073-1090, 2019 09.
Article in English | MEDLINE | ID: mdl-31081561

ABSTRACT

PURPOSE: In this study we propose a method to combine the parallel virtual conjugate coil (VCC) reconstruction with partial Fourier (PF) acquisition to improve reconstruction conditioning and reduce noise amplification in accelerated MRI where PF is used. METHODS: Accelerated measurements are reconstructed in k-space by GRAPPA, with a VCC reconstruction kernel trained and applied in the central, symmetrically sampled part of k-space, while standard reconstruction is performed on the asymmetrically sampled periphery. The two reconstructed regions are merged to form a full reconstructed dataset, followed by PF reconstruction. The method is tested in vivo using T1-weighted spin-echo and T2*-weighted gradient-echo echo planar imaging (EPI) sequences, using both in-plane and simultaneous multislice (SMS) acceleration, at 1.5T and 3T field strengths. Noise amplification is estimated with theoretical calculations and pseudo-multiple-replica computations, for different PF factors, using zero-filling, homodyne, and projection onto convex sets (POCS) PF reconstruction. RESULTS: Depending on the PF algorithm and the inherent benefit of VCC reconstruction without PF, approximately 35% to 80%, 15% to 60%, and 5% to 30% of that intrinsic SNR gain can be retained for PF factors 7/8, 6/8, and 5/8, respectively, by including the VCC signals in the reconstruction. Compared with VCC-reconstructed acquisitions of higher acceleration, without PF, but having the same net acceleration, the combined method can provide a higher SNR if the inherent benefit of VCC is low or moderate. CONCLUSION: The proposed technique enables the partial application of VCC reconstruction to measurements with PF using either in-plane or SMS acceleration, and therefore can reduce the noise amplification of such acquisitions.


Subject(s)
Fourier Analysis , Image Processing, Computer-Assisted/methods , Magnetic Resonance Imaging/methods , Algorithms , Brain/diagnostic imaging , Humans , Signal-To-Noise Ratio , Time Factors
5.
Magn Reson Med ; 79(4): 2113-2125, 2018 04.
Article in English | MEDLINE | ID: mdl-28862362

ABSTRACT

PURPOSE: Parallel imaging generally entails a reduction in the signal-to-noise ratio of the final image. Phase-constrained methods aim to improve reconstruction quality by using symmetry properties of k-space. Noise amplification in phase-constrained reconstruction depends heavily on the object background phase. The purpose of this work is to present a new approach of using tailored radiofrequency pulses to optimize the object phase distribution in order to maximize the benefit of phase-constrained reconstruction, and to minimize the noise amplification. METHODS: Intrinsic object phase and coil sensitivity profiles are measured in a prescan. Optimal phase distribution is computed to maximize signal-to-noise ratio in the given setup. Tailored radiofrequency pulses are designed to introduce the optimal phase map in the following accelerated acquisitions, subsequently reconstructed by phase-constrained methods. The potential of the method is demonstrated in vivo with in-plane accelerated (8x) and simultaneous multislice (3x) acquisitions. RESULTS: Mean g-factors are reduced by up to a factor of 2 compared with conventional techniques when an appropriate phase-constrained reconstruction is applied to phase-optimized acquisitions, enhancing the signal-to-noise ratio of the final images and the visibility of small details. CONCLUSIONS: Combining phase-constrained reconstruction and phase optimization by tailored radiofrequency pulses can provide notable improvement in the signal-to-noise ratio and reconstruction quality of accelerated MRI. Magn Reson Med 79:2113-2125, 2018. © 2017 International Society for Magnetic Resonance in Medicine.


Subject(s)
Image Processing, Computer-Assisted/methods , Magnetic Resonance Imaging , Algorithms , Brain/diagnostic imaging , Calibration , Computer Simulation , Humans , Image Interpretation, Computer-Assisted , Radio Waves , Reproducibility of Results , Signal-To-Noise Ratio
6.
Front Neurosci ; 10: 571, 2016.
Article in English | MEDLINE | ID: mdl-28018165

ABSTRACT

Multi-echo fMRI data acquisition has been widely investigated and suggested to optimize sensitivity for detecting the BOLD signal. Several methods have also been proposed for the combination of data with different echo times. The aim of the present study was to investigate whether these advanced echo combination methods provide advantages over the simple averaging of echoes when state-of-the-art group-level random-effect analyses are performed. Both resting-state and task-based dual-echo fMRI data were collected from 27 healthy adult individuals (14 male, mean age = 25.75 years) using standard echo-planar acquisition methods at 3T. Both resting-state and task-based data were subjected to a standard image pre-processing pipeline. Subsequently the two echoes were combined as a weighted average, using four different strategies for calculating the weights: (1) simple arithmetic averaging, (2) BOLD sensitivity weighting, (3) temporal-signal-to-noise ratio weighting and (4) temporal BOLD sensitivity weighting. Our results clearly show that the simple averaging of data with the different echoes is sufficient. Advanced echo combination methods may provide advantages on a single-subject level but when considering random-effects group level statistics they provide no benefit regarding sensitivity (i.e., group-level t-values) compared to the simple echo-averaging approach. One possible reason for the lack of clear advantages may be that apart from increasing the average BOLD sensitivity at the single-subject level, the advanced weighted averaging methods also inflate the inter-subject variance. As the echo combination methods provide very similar results, the recommendation is to choose between them depending on the availability of time for collecting additional resting-state data or whether subject-level or group-level analyses are planned.

7.
Appl Opt ; 52(22): 5449-54, 2013 Aug 01.
Article in English | MEDLINE | ID: mdl-23913064

ABSTRACT

In this paper we propose a method to generate independent and simultaneous phase and amplitude modulation by a phase-only spatial light modulator and Fourier filtering. The incident light is modulated by a suitable phase pattern containing high spatial frequencies. The modulated light is transmitted through a 4f optical system having an appropriate spatial filter in the Fourier plane in order to synthesize the expected complex modulated wavefront on the output of the system. We propose a simple method to generate spatial filters applicable for the phase-only to complex modulated wavefront conversion. We analyze the quality of the output image related to the ideal wavefront using the proposed filters. We show that more efficient complex modulation can be realized by the proposed method than by the earlier solutions.

SELECTION OF CITATIONS
SEARCH DETAIL
...