Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Phys Chem B ; 111(30): 8775-84, 2007 Aug 02.
Article in English | MEDLINE | ID: mdl-17602516

ABSTRACT

Chlorhexidine (CH) is an effective antimicrobial agent. There has been very little work published concerning the interactions of CH with, and its adsorption mechanism on, cellulose. In this paper, such physical chemistry parameters are examined and related to computational chemistry studies. Adsorption isotherms were constructed following application of CH to cellulose. These were typical of a Langmuir adsorption isotherm, but at higher concentrations displayed good correlation also with a Freundlich isotherm. Sorption was attributed to a combination of electrostatic (major contribution) and hydrogen bonding forces, which endorsed computational chemistry proposals: electrostatic interactions between CH and carboxylic acid groups in the cellulose dominate with a contribution to binding through hydrogen bonding of the biguanide residues and the p-chlorophenol moieties (Yoshida H-bonding) with the cellulose hydroxyl groups. At high CH concentrations, there is evidence of monolayer and bilayer aggregation. Differences in sorption between CH and another antimicrobial agent previously studied, poly(hexamethylenebiguanide) (PHMB), are attributed to higher molecular weight of PHMB and higher charge density of biguanide residues in CH (due to the relative electron withdrawing effect of the p-chlorophenol moiety).


Subject(s)
Cellulose/chemistry , Chlorhexidine/chemistry , Adsorption , Anti-Infective Agents, Local/chemistry , Computer Simulation , Models, Biological , Molecular Structure , Spectrophotometry
2.
Langmuir ; 22(13): 5636-44, 2006 Jun 20.
Article in English | MEDLINE | ID: mdl-16768488

ABSTRACT

Antimicrobial agents such as poly(hexamethylene biguanide) (PHMB) find application in medical, apparel, and household textile sectors; although it is understood that certain concentrations need to be applied to achieve suitable performance, there has been very little work published concerning the interactions of the polymer and its adsorption mechanism on cellulose. In this paper, such physical chemistry parameters are examined and related to computational chemistry studies. Adsorption isotherms were constructed: at low concentrations, these were typical Langmuir isotherms; at higher concentrations, they were more indicative of Freundlich isotherms, attributed to a combination of electrostatic and hydrogen-bonding forces, which endorsed computational chemistry proposals. At lower concentrations, electrostatic interactions between PHMB and carboxylic acid groups in the cellulose dominate with a contribution to binding through hydrogen bonding; as the concentration of PHMB increases, hydrogen bonding with cellulose becomes increasingly dominant. At high PHMB concentrations, observations of increasing PHMB adsorption are attributed to monolayer aggregation and multilayer stacking of PHMB through electrostatic interactions with counterions and hydrogen bonding of biguanide groups.


Subject(s)
Anti-Infective Agents/chemistry , Cellulose/chemistry , Guanidines/chemistry , Polymers/chemistry , Adsorption , Binding Sites , Coated Materials, Biocompatible/chemistry , Hydrogen Bonding , Models, Molecular , Static Electricity , Textiles
3.
Dalton Trans ; (9): 1204-12, 2006 Mar 07.
Article in English | MEDLINE | ID: mdl-16482358

ABSTRACT

Dimethylamine-gallane is relatively slow to decompose in a closed system and vaporises at low temperature primarily as Me2(H)N.GaH3 molecules which can be trapped in a solid Ar matrix and characterised by their IR spectrum. Under the conditions needed to secure a useful gas electron diffraction (GED) pattern, however, the vapour was found to consist of dimeric dimethylamidogallane molecules, [Me2NGaH2]2, formed from the secondary amine adduct by elimination of H2, and the most reliable structure for which has been determined. Salient structural parameters (r(hl) structure) were found to be: r(Ga-N) 202.6(2), r(Ga-H) 155.6(8), r(N-C) 148.0(3), r(C-H) 111.2(6) pm; Ga-N-Ga 90.7(1), C-N-C 109.3(5), N-C-H 109.9(10) and H-Ga-H 119.4(42) degrees.

SELECTION OF CITATIONS
SEARCH DETAIL
...