Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 15(1): 2133, 2024 Mar 08.
Article in English | MEDLINE | ID: mdl-38459022

ABSTRACT

Many countries continue to experience pertussis epidemics despite widespread vaccination. Waning protection after booster vaccination has highlighted the need for a better understanding of the immunological factors that promote durable protection. Here we apply systems vaccinology to investigate antibody responses in adolescents in the Netherlands (N = 14; NL) and the United Kingdom (N = 12; UK) receiving a tetanus-diphtheria-acellular pertussis-inactivated poliovirus (Tdap-IPV) vaccine. We report that early antiviral and interferon gene expression signatures in blood correlate to persistence of pertussis-specific antibody responses. Single-cell analyses of the innate response identified monocytes and myeloid dendritic cells (MoDC) as principal responders that upregulate antiviral gene expression and type-I interferon cytokine production. With public data, we show that Tdap vaccination stimulates significantly lower antiviral/type-I interferon responses than Tdap-IPV, suggesting that IPV may promote antiviral gene expression. Subsequent in vitro stimulation experiments demonstrate TLR-dependent, IPV-specific activation of the pro-inflammatory p38 MAP kinase pathway in MoDCs. Together, our data provide insights into the molecular host response to pertussis booster vaccination and demonstrate that IPV enhances innate immune activity associated with persistent, pertussis-specific antibody responses.


Subject(s)
Diphtheria-Tetanus-acellular Pertussis Vaccines , Diphtheria , Poliovirus , Tetanus , Whooping Cough , Adolescent , Humans , Bordetella pertussis , Immunity, Humoral , Whooping Cough/prevention & control , Diphtheria/prevention & control , Vaccines, Combined , Antibodies, Bacterial , Poliovirus Vaccine, Inactivated , Vaccination , Immunization, Secondary , Corynebacterium , Interferons , Antiviral Agents
2.
Proc Natl Acad Sci U S A ; 116(43): 21769-21779, 2019 10 22.
Article in English | MEDLINE | ID: mdl-31591196

ABSTRACT

Translational frameshifting involves the repositioning of ribosomes on their messages into decoding frames that differ from those dictated during initiation. Some messenger RNAs (mRNAs) contain motifs that promote deliberate frameshifting to regulate production of the encoded proteins. The mechanisms of frameshifting have been investigated in many systems, and the resulting models generally involve single ribosomes responding to stimulator sequences in their engaged mRNAs. We discovered that the abundance of ribosomes on messages containing the IS3, dnaX, and prfB frameshift motifs significantly influences the levels of frameshifting. We show that this phenomenon results from ribosome collisions that occur during translational stalling, which can alter frameshifting in both the stalled and trailing ribosomes. Bacteria missing ribosomal protein bL9 are known to exhibit a reduction in reading frame maintenance and to have a strong dependence on elongation factor P (EFP). We discovered that ribosomes lacking bL9 become compacted closer together during collisions and that the E-sites of the stalled ribosomes appear to become blocked, which suggests subsequent transpeptidation in transiently stalled ribosomes may become compromised in the absence of bL9. In addition, we determined that bL9 can suppress frameshifting of its host ribosome, likely by regulating E-site dynamics. These findings provide mechanistic insight into the behavior of colliding ribosomes during translation and suggest naturally occurring frameshift elements may be regulated by the abundance of ribosomes relative to an mRNA pool.


Subject(s)
Escherichia coli/genetics , Frameshifting, Ribosomal/genetics , RNA, Messenger/genetics , Reading Frames/genetics , Ribosomes/metabolism , Escherichia coli/metabolism , Frameshift Mutation/genetics , Nucleic Acid Conformation , Peptide Elongation Factors/metabolism , Protein Biosynthesis/genetics , Ribosomal Proteins/metabolism
3.
J Fungi (Basel) ; 4(3)2018 Aug 26.
Article in English | MEDLINE | ID: mdl-30149666

ABSTRACT

Simple sugars produced from a solvent-free mechanocatalytic degradation of cellulose were evaluated for suitability as a growth medium carbon source for fungi that produce volatile organic compounds. An endophytic Hypoxylon sp. (CI-4) known to produce volatiles having potential value as fuels was initially evaluated. The growth was obtained on a medium containing the degraded cellulose as the sole carbon source, and the volatile compounds produced were largely the same as those produced from a conventional dextrose/starch diet. A second Hypoxylon sp. (BS15) was also characterized and shown to be phylogenetically divergent from any other named species. The degraded cellulose medium supported the growth of BS15, and approximately the same quantity of the volatile compounds was produced as from conventional diets. Although the major products from BS15 grown on the degraded cellulose were identical to those from dextrose, the minor products differed. Neither CI-4 or BS15 exhibited growth on cellulose that had not been degraded. The extraction of volatiles from the growth media was achieved using solid-phase extraction in order to reduce the solvent waste and more efficiently retain compounds having low vapor pressures. A comparison to more conventional liquid⁻liquid extraction demonstrated that, for CI-4, both methods gave similar results. The solid-phase extraction of BS15 retained a significantly larger variety of the volatile compounds than did the liquid⁻liquid extraction. These advances position the coupling of solvent-free cellulose conversion and endophyte metabolism as a viable strategy for the production of important hydrocarbons.

4.
Magn Reson Chem ; 55(11): 979-989, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28557141

ABSTRACT

This study explores the feasibility of using a combination of experimental and theoretical 1-bond 13 C─13 C scalar couplings (1 JCC ) to establish structure in organic compounds, including unknowns. Historically, n JCC and n JCH studies have emphasized 2 and 3-bond couplings, yet 1 JCC couplings exhibit significantly larger variations. Moreover, recent improvements in experimental measurement and data processing methods have made 1 JCC data more available. Herein, an approach is evaluated in which a collection of theoretical structures is created from a partial nuclear magnetic resonance structural characterization. Computed 1 JCC values are compared to experimental data to identify candidates giving the best agreement. This process requires knowledge of the error in theoretical methods, thus the B3LYP, B3PW91, and PBE0 functionals are evaluated by comparing to 27 experimental values from INADEQUATE. Respective errors of ±1.2, ±3.8, and ±2.3 Hz are observed. An initial test of this methodology involves the natural product 5-methylmellein. In this case, only a single candidate matches experimental data with high statistical confidence. This analysis establishes the intramolecular hydrogen-bonding arrangement, ring heteroatom identity, and conformation at one position. This approach is then extended to hydroheptelidic acid, a natural product not fully characterized in prior studies. The experimental/theoretical approach proposed herein identifies a single best-fit structure from among 26 candidates and establishes, for the first time, 1 configuration and 3 conformations to complete the characterization. These results suggest that accurate and complete structural characterizations of many moderately sized organic structures (<800 Da) may be possible using only 1 JCC data.


Subject(s)
Biological Products/chemistry , Carbon-13 Magnetic Resonance Spectroscopy/methods , Hydrogen Bonding , Isocoumarins/chemistry , Models, Chemical , Models, Molecular , Molecular Conformation , Molecular Structure , Quantum Theory
SELECTION OF CITATIONS
SEARCH DETAIL
...