Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Water Res ; 53: 259-70, 2014 Apr 15.
Article in English | MEDLINE | ID: mdl-24530546

ABSTRACT

Disinfection in swimming pools is often performed by chlorination, However, anthropogenic pollutants from swimmers will react with chlorine and form disinfection by-products (DBPs). DBPs are unwanted from a health point of view, because some are irritating, while others might be carcinogenic. The reduction of anthropogenic pollutants will lead to a reduction in DBPs. This paper investigates the continual release of anthropogenic pollutants by means of controlled sweat experiments in a pool tank during laboratory time-series experiments (LTS experiments) and also during on-site experiments (OS experiments) in a swimming pool. The sweat released during the OS and LTS experiments was very similar. The sweat rate found was 0.1-0.2 L/m(2)/h at water temperatures below 29 °C and increased linearly with increasing water temperatures to 0.8 L/m(2)/h at 35 °C. The continual anthropogenic pollutant release (CAPR) not only consisted of sweat, particles (mainly skin fragments and hair) and micro-organisms, but also sebum (skin lipids) has to be considered. The release of most components can be explained by the composition of sweat. The average release during 30 min of exercise is 250 mg/bather non-purgeable organic carbon (NPOC), 77.3 mg/bather total nitrogen (TN), 37.1 mg/bather urea and 10.1 mg/bather ammonium. The release of NPOC cannot be explained by the composition of sweat and is most probably a result of sebum release. The average release of other components was 1.31 × 10(9) # particles/bather (2-50 µm), 5.2 µg/bather intracellular adenosine triphosphate (cATP) and 9.3 × 10(6) intact cell count/bather (iCC). The pool water temperature was the main parameter to restrain the CAPR. This study showed that a significant amount of the total anthropogenic pollutants release is due to unhygienic behaviour of bathers.


Subject(s)
Disinfectants/analysis , Environmental Monitoring , Swimming Pools , Water Pollutants, Chemical/analysis , Disinfectants/chemistry , Humans , Sweating , Temperature
2.
Water Res ; 46(11): 3682-92, 2012 Jul.
Article in English | MEDLINE | ID: mdl-22560894

ABSTRACT

Pollutants, brought into a swimming pool by bathers, will react with chlorine to form disinfection by-products (DBPs). Some of these DBPs are found to be respiratory and ocular irritant and might be associated with asthma, or might even be carcinogenic. As DBPs in swimming pools are formed from bather-shed-pollutants, a reduction of these pollutants will lead to a reduction of DBPs. Until now, however, the release of pollutants by bathers has not been studied in detail. The study described in this paper focuses on the release of these pollutants, further called anthropogenic pollutants. The objective was to define and quantify the initial anthropogenic pollutants, by using a standardised shower cabin and a standardised showering protocol in laboratory time-series experiments and on-site experiments in swimming pools. The time-series experiments resulted in a definition of the initial anthropogenic pollutant release: the amount of pollutants released from a person in a standardised shower cabin during the first 60 s of showering. The data from the time-series experiments were used to create a model of pollutant release. The model can be used to predict the initial anthropogenic pollutant release as well as the effects of showering. On-site experiments were performed at four different swimming pools, including one outdoor pool. Results of these on-site showering experiments correspond with the time-series and model outcomes. Anthropogenic pollutant release (both chemical and microbiological) in swimming pool water can be reduced by pre-swim showering, very likely resulting in decreased DBPs formation and chlorine demand.


Subject(s)
Swimming Pools , Water Pollutants, Chemical/analysis , Adolescent , Adult , Aged , Aged, 80 and over , Child , Disinfection/methods , Humans , Middle Aged , Models, Theoretical , Water/analysis , Water Microbiology , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...