Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Language
Publication year range
1.
Preprint in English | medRxiv | ID: ppmedrxiv-20148395

ABSTRACT

The SARS-CoV-2 pandemic is currently leading to increasing numbers of COVID-19 patients all over the world. Clinical presentations range from asymptomatic, mild respiratory tract infection, to severe cases with acute respiratory distress syndrome, respiratory failure, and death. Reports on a dysregulated immune system in the severe cases calls for a better characterization and understanding of the changes in the immune system. Here, we profiled whole blood transcriptomes of 39 COVID-19 patients and 10 control donors enabling a data-driven stratification based on molecular phenotype. Neutrophil activation-associated signatures were prominently enriched in severe patient groups, which was corroborated in whole blood transcriptomes from an independent second cohort of 30 as well as in granulocyte samples from a third cohort of 11 COVID-19 patients. Comparison of COVID-19 blood transcriptomes with those of a collection of over 2,800 samples derived from 11 different viral infections, inflammatory diseases and independent control samples revealed highly specific transcriptome signatures for COVID-19. Further, stratified transcriptomes predicted patient subgroup-specific drug candidates targeting the dysregulated systemic immune response of the host.

2.
Preprint in English | medRxiv | ID: ppmedrxiv-20119818

ABSTRACT

Severe Acute Respiratory Syndrome - Coronavirus-2 (SARS-CoV-2) infection causes Coronavirus Disease 2019 (COVID-19), a mild to moderate respiratory tract infection in the majority of patients. A subset of patients, however, progresses to severe disease and respiratory failure with acute respiratory distress syndrome (ARDS). Severe COVID-19 has been associated with increased neutrophil counts and dysregulated immune responses. The mechanisms of protective immunity in mild forms and the pathogenesis of dysregulated inflammation in severe courses of COVID-19 remain largely unclear. Here, we combined two single-cell RNA-sequencing technologies and single-cell proteomics in whole blood and peripheral blood mononuclear cells (PBMC) to determine changes in immune cell composition and activation in two independent dual-center patient cohorts (n=46+n=54 COVID-19 samples), each with mild and severe cases of COVID-19. We observed a specific increase of HLA-DRhiCD11chi inflammatory monocytes that displayed a strong interferon (IFN)-stimulated gene signature in patients with mild COVID-19, which was absent in severe disease. Instead, we found evidence of emergency myelopoiesis, marked by the occurrence of immunosuppressive pre-neutrophils and immature neutrophils and populations of dysfunctional and suppressive mature neutrophils, as well as suppressive HLA-DRto monocytes in severe COVID-19. Our study provides detailed insights into systemic immune response to SARS-CoV-2 infection and it reveals profound alterations in the peripheral myeloid cell compartment associated with severe courses of COVID-19.

3.
Christoph Muus; Malte D Luecken; Gokcen Eraslan; Avinash Waghray; Graham Heimberg; Lisa Sikkema; Yoshihiko Kobayashi; Eeshit Dhaval Vaishnav; Ayshwarya Subramanian; Christopher Smillie; Karthik Jagadeesh; Elizabeth Thu Duong; Evgenij Fiskin; Elena Torlai Triglia; Christophe Becavin; Meshal Ansari; Peiwen Cai; Brian Lin; Justin Buchanan; Jian Shu; Adam L Haber; Hattie Chung; Daniel T Montoro; Taylor Adams; Hananeh Aliee; Samuel J Allon; Zaneta Andrusivova; Ilias Angelidis; Orr Ashenberg; Kevin Bassler; Inbal Benhar; Joseph Bergenstrahle; Ludvig Bergenstrahle; Liam Bolt; Emelie Braun; Linh T Bui; Mark Chaffin; Evgeny Chichelnitskiy; Joshua Chiou; Thomas M Conlon; Michael S Cuoco; Marie Deprez; David S Fischer; Astrid Gillich; Joshua Gould; Austin J Gutierrez; Arun C Habermann; Tyler Harvey; Peng He; Xiaomeng Hou; Lijuan Hu; Alok Jaiswal; Peiyong Jiang; Theodoros Kapellos; Christin S Kuo; Ludvig Larsson; Michael A Leney-Greene; Kyungtae Lim; Monika Litvinukova; Ji Lu; Leif S Ludwig; Wendy Luo; Henrike Maatz; Elo Maddissoon; Lira Mamanova; Kasidet Manakongtreecheep; Ian Mbano; Alexi M McAdams; Ross J Metzger; Ahmad N Nabhan; Sarah K Nyquist; Jose Ordovas-Montanes; Lolita Penland; Olivier B Poirion; Segio Poli; CanCan Qi; Daniel Reichart; Ivan Rosas; Jonas Schupp; Rahul Sinha; Rene V Sit; Kamil Slowikowski; Michal Slyper; Neal Smith; Alex Sountoulidis; Maximilian Strunz; Dawei Sun; Carlos Talavera-Lopez; Peng Tan; Jessica Tantivit; Kyle J Travaglini; Nathan R Tucker; Katherine Vernon; Marc H Wadsworth III; Julia Waldman; Xiuting Wang; Wenjun Yan; Ali Onder Yildirim; William Zhao; Carly G K Ziegler; Aviv Regev; - The NHLBI LungMAP Consortium; - The Human Cell Atlas Lung Biological Network.
Preprint in English | bioRxiv | ID: ppbiorxiv-049254

ABSTRACT

The COVID-19 pandemic, caused by the novel coronavirus SARS-CoV-2, creates an urgent need for identifying molecular mechanisms that mediate viral entry, propagation, and tissue pathology. Cell membrane bound angiotensin-converting enzyme 2 (ACE2) and associated proteases, transmembrane protease serine 2 (TMPRSS2) and Cathepsin L (CTSL), were previously identified as mediators of SARS-CoV2 cellular entry. Here, we assess the cell type-specific RNA expression of ACE2, TMPRSS2, and CTSL through an integrated analysis of 107 single-cell and single-nucleus RNA-Seq studies, including 22 lung and airways datasets (16 unpublished), and 85 datasets from other diverse organs. Joint expression of ACE2 and the accessory proteases identifies specific subsets of respiratory epithelial cells as putative targets of viral infection in the nasal passages, airways, and alveoli. Cells that co-express ACE2 and proteases are also identified in cells from other organs, some of which have been associated with COVID-19 transmission or pathology, including gut enterocytes, corneal epithelial cells, cardiomyocytes, heart pericytes, olfactory sustentacular cells, and renal epithelial cells. Performing the first meta-analyses of scRNA-seq studies, we analyzed 1,176,683 cells from 282 nasal, airway, and lung parenchyma samples from 164 donors spanning fetal, childhood, adult, and elderly age groups, associate increased levels of ACE2, TMPRSS2, and CTSL in specific cell types with increasing age, male gender, and smoking, all of which are epidemiologically linked to COVID-19 susceptibility and outcomes. Notably, there was a particularly low expression of ACE2 in the few young pediatric samples in the analysis. Further analysis reveals a gene expression program shared by ACE2+TMPRSS2+ cells in nasal, lung and gut tissues, including genes that may mediate viral entry, subtend key immune functions, and mediate epithelial-macrophage cross-talk. Amongst these are IL6, its receptor and co-receptor, IL1R, TNF response pathways, and complement genes. Cell type specificity in the lung and airways and smoking effects were conserved in mice. Our analyses suggest that differences in the cell type-specific expression of mediators of SARS-CoV-2 viral entry may be responsible for aspects of COVID-19 epidemiology and clinical course, and point to putative molecular pathways involved in disease susceptibility and pathogenesis.

SELECTION OF CITATIONS
SEARCH DETAIL
...