Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 14(1): 1987, 2024 01 23.
Article in English | MEDLINE | ID: mdl-38263382

ABSTRACT

Germination and fermentation are age-long food processes that beneficially improve food composition. Biological modulation by germination and probiotic fermentation of cowpea, sorghum, and orange-fleshed sweet potato (OFSP) and subsequent effects on the physicochemical (pH and total titratable acidity), nutritional, antinutritional factors and health-promoting constituents/properties (insoluble dietary fibres, total flavonoid and phenolic contents (TFC and TPC) and antioxidant capacity) of the derived flours were investigated in this study. The quantification of targeted compounds (organic acids and phenolic compounds) on an ultra-high performance liquid chromatography (UHPLC) system was also done. The whole cowpea and sorghum were germinated at 35 °C for 48 h. On the other hand, the milled whole grains and beans and OFSP were fermented using probiotic mesophilic culture at 35 °C for 48 h. Among the resultant bioprocessed flours, fermented sorghum and sweet potato (FSF and FSP) showed mild acidity, increased TPC, and improved ferric ion-reducing antioxidant power. While FSF had better slowly digestible and resistant starches and the lowest oxalate content, FSP indicated better hemicellulose, lowest fat, highest luteolin, caffeic and vanillic acids. Germinated cowpea flour exhibited reduced tannin, better lactic acid, the highest crude fibre, cellulose, lignin, protein, fumaric, L-ascorbic, trans-ferulic and sinapic acids. The comparable and complementary variations suggest the considerable influence of the substrate types, followed by the specific processing-based hydrolysis and biochemical transitions. Thus, compositing the bioprocessed flours based on the unique constituent features for developing functional products from climate-smart edibles may partly be the driver to ameliorating linked risk factors of cardiometabolic diseases.


Subject(s)
Ipomoea batatas , Sorghum , Vigna , Flour , Antioxidants , Edible Grain , Health Promotion
2.
Sci Rep ; 12(1): 12347, 2022 07 19.
Article in English | MEDLINE | ID: mdl-35853931

ABSTRACT

Presentation of foods is essential to promote the acceptance of diversified and novel products. This study examined the color profile, browning index (BI), and structural properties of 3D-printed and traditional biscuits from whole-grain (WG) sourdough and germinated flours. The processed flours and composite/multigrain flours comprising cowpea sourdough (CS) and quinoa malt (QM) were used to prepare the snacks, and their structural characteristics were determined. Compared with the traditional biscuits, the 3D-printed biscuits showed considerable distinction in terms of consistent structural design and color intensities. The in-barrel shearing effect on dough biopolymers, automated printing of replicated dough strands in layers, and expansion during baking might have caused the biscuits' structural differences. The composite biscuit formulations had a proportional share of CS and QM characteristics. The 80% CS and 20% QM printed biscuit had a low redness and BI, increased cell volume, average cell area, and total concavity. The 60% CS and 40% QM printed snack showed improved lightness and yellowness, increased average cell elongation, and less hardness. The 3D-printed composite biscuits may be recommended based on their unique structural characteristics. Such attributes can enhance the acceptability of printed foods and reinvent locally prepared meals as trendy, sustainable, and functional foods.


Subject(s)
Flour , Vigna , Flour/analysis , Printing, Three-Dimensional , Snacks , Vigna/chemistry , Whole Grains
3.
Crit Rev Food Sci Nutr ; 62(28): 7866-7904, 2022.
Article in English | MEDLINE | ID: mdl-33970701

ABSTRACT

One of the recent, innovative, and digital food revolutions gradually gaining acceptance is three-dimensional food printing (3DFP), an additive technique used to develop products, with the possibility of obtaining foods with complex geometries. Recent interest in this technology has opened the possibilities of complementing existing processes with 3DFP for better value addition. Fermentation and malting are age-long traditional food processes known to improve food value, functionality, and beneficial health constituents. Several studies have demonstrated the applicability of 3D printing to manufacture varieties of food constructs, especially cereal-based, from root and tubers, fruit and vegetables as well as milk and milk products, with potential for much more value-added products. This review discusses the extrusion-based 3D printing of foods and the major factors affecting the process development of successful edible 3D structures. Though some novel food products have emanated from 3DFP, considering the beneficial effects of traditional food processes, particularly fermentation and malting in food, concerted efforts should also be directed toward developing 3D products using substrates from these conventional techniques. Such experimental findings will significantly promote the availability of minimally processed, affordable, and convenient meals customized in complex geometric structures with enhanced functional and nutritional values.


Subject(s)
Functional Food , Printing, Three-Dimensional , Food , Food Handling/methods , Fruit , Vegetables
4.
Insects ; 11(5)2020 May 05.
Article in English | MEDLINE | ID: mdl-32380684

ABSTRACT

Efforts to attain sustainable nutritional diets in sub-Saharan Africa (SSA) are still below par. The continent is envisaged to face more impending food crises. This review presents an overview of common edible insects in Africa, their nutritional composition, health benefits and utilization in connection with fermentation to enrich the inherent composition of insect-based products and offer foods related to existing and generally preferred culinary practice. Attempts to explore fermentation treatments involving insects showed fermentation affected secondary metabolites to induce antimicrobial, nutritional and therapeutic properties. Available value-added fermented edible insect products like paste, powder, sauces, and insect containing fermented foods have been developed with potential for more. Novel fermented edible insect-based products could effectively fit in the continent's food mix and therefore mitigate ongoing food insecurity, as well as to balance nutrition with health risk concerns limiting edible insects' product acceptability in SSA.

5.
Food Sci Nutr ; 6(8): 2210-2226, 2018 Nov.
Article in English | MEDLINE | ID: mdl-30510722

ABSTRACT

The current industrial demand for starchy foods has been dominated by other roots and tubers, while cocoyam, despite being rich in fiber, minerals, and vitamins has remained under exploited. In this study, the effect of feed moisture content (FMC), screw speed (SS) and barrel temperature (BT) on the quality characteristics of cocoyam noodles (proximate, thermo-physical, physicochemical, texture, color, extrudate properties, and sensory characteristics) were investigated using central composite design (CCD) of response surface methodology (RSM). Flour was produced from fresh tubers of cocoyam (Xanthosoma sagittifolium) and subsequently processed into noodles using a twin screw extruder. Results showed that the proximate compositions, thermo-physical, physicochemical properties, and color of the cocoyam noodles were significantly (p < 0.05) influenced by the extrusion process variables. The texture and extrudate properties of cocoyam noodles were equally significantly (p < 0.05) different. The experimental data obtained and predicted values of the response models were comparable, with statistical indices [absolute average deviation (AAD, 0-0.23), bias factor (B f, 1-1.08), and accuracy factor (A f, 1-1.23)] indicating the validity of the derived models. The optimal extrusion processing conditions for quality cocoyam noodles were FMC, SS, and BT of 47.5%, 700 rpm and 50°C, respectively, as cocoyam noodles obtained at these conditions had comparable properties and were most preferred and accepted by the sensory panelists.

SELECTION OF CITATIONS
SEARCH DETAIL
...