Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
Add more filters










Publication year range
1.
Forensic Sci Res ; 9(1): owad051, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38562551

ABSTRACT

Bullet ricochets are common occurrences during shooting incidents and can provide a wealth of information useful for shooting incident reconstruction. However, there have only been a small number of studies that have systematically investigated bullet ricochet impact site morphology. Here, this study reports on an experiment that examined the plan-view morphology of 297 ricochet impact sites in concrete that were produced by five different bullet types shot from two distances. This study used a random forest machine learning algorithm to classify bullet types with morphological dimensions of the ricochet mark (impact) with length and perimeter-to-area ratio emerging as the top predictor variables. The 0.22 LR leaves the most distinctive impact mark on the concrete, and overall, the classification accuracy using leave-one-out cross-validation is 62%, considerably higher than a random classification accuracy of 20%. Adding in distance to the model as a predictor increases the classification accuracy to 66%. These initial results are promising, in that they suggest that an unknown bullet type can potentially be determined, or at least probabilistically assessed, from the morphology of the ricochet impact site alone. However, the substantial amount of overlap this study documented among distinct bullet types' ricochet mark morphologies under highly controlled conditions and with machine learning suggests that the human identification of ricochet marks in real-world shooting incident reconstructions may be on occasion, or perhaps regularly, in error. Key points: Bullet ricochet impact sites can help with shooting incident reconstruction.A random forest machine learning algorithm classified bullet type from ricochet morphology.Results suggest that unknown bullets can potentially be determined from ricochet impact site morphology.Human identification of bullet types from ricochet sites may be erroneous.

2.
Am J Biol Anthropol ; 183(3): e24759, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37218536

ABSTRACT

OBJECTIVES: Current evidence suggests that flaked stone tool technologies did not emerge until ~3.3-2.6 million-years-ago (Ma). It is often hypothesized that early hominin (principally Ardipithecus and early Australopithecus) manual anatomy may have prevented an earlier emergence, as the forceful precision grips essential to flake tool-use may have been ineffectively performed by these species. Marzke, Marchant, McGrew, and Reece (2015) observed potentially forceful pad-to-side precision grips being recruited by wild chimpanzees (Pan troglodytes) during feeding behaviors, indicating that Pan-like manual anatomy, and therefore potentially early hominin anatomy, may be capable of effectively securing flake stone tools during their use. MATERIALS AND METHODS: Here, we report on the grips recruited by four captive, human-trained, bonobos (Pan paniscus) during the use of stone and organic tools, including flake stone tools during cutting behaviors. RESULTS: It is revealed that pad-to-side precision grips are frequently recruited by these bonobos when securing stone flakes during cutting actions. In some instances, high forces could have been resisted and applied by the thumb and fingers. DISCUSSION: While our analyzes are preliminary and limited to captive individuals, and Pan is not suggested to secure flakes with the same efficacy as Homo or Australopithecus, it points to early hominins potentially being able to perform the precision grips required to use flake stone tools. In turn, the ability to gain tangible benefits from the effective use of flake tools (i.e., gain energetic returns from processing food resources) may have been - at least anatomically - possible in early Australopithecus and other pre-Early Stone Age hominin species. In turn, hominin manual anatomy may not be a leading restriction on the emergence of the earliest stone tool technologies.


Subject(s)
Hominidae , Pan paniscus , Humans , Animals , Hominidae/anatomy & histology , Pan troglodytes , Thumb/anatomy & histology , Hand Strength
4.
Sci Rep ; 13(1): 15582, 2023 09 20.
Article in English | MEDLINE | ID: mdl-37730739

ABSTRACT

The evolution of the hominin hand has been widely linked to the use and production of flaked stone tool technologies. After the earliest handheld flake tools emerged, shifts in hominin hand anatomy allowing for greater force during precision gripping and ease when manipulating objects in-hand are observed in the fossil record. Previous research has demonstrated how biometric traits, such as hand and digit lengths and precision grip strength, impact functional performance and ergonomic relationships when using flake and core technologies. These studies are consistent with the idea that evolutionary selective pressures would have favoured individuals better able to efficiently and effectively produce and use flaked stone tools. After the advent of composite technologies during the Middle Stone Age and Middle Palaeolithic, fossil evidence reveals differences in hand anatomy between populations, but there is minimal evidence for an increase in precision gripping capabilities. Furthermore, there is little research investigating the selective pressures, if any, impacting manual anatomy after the introduction of hafted composite stone technologies ('handles'). Here we investigated the possible influence of tool-user biometric variation on the functional performance of 420 hafted Clovis knife replicas. Our results suggest there to be no statistical relationships between biometric variables and cutting performance. Therefore, we argue that the advent of hafted stone technologies may have acted as a 'performance equaliser' within populations and removed (or reduced) selective pressures favouring forceful precision gripping capabilities, which in turn could have increased the relative importance of cultural evolutionary selective pressures in the determination of a stone tool's performance.


Subject(s)
Cultural Evolution , Hominidae , Influenza, Human , Humans , Animals , Upper Extremity , Hand , Biometry
5.
Evol Anthropol ; 32(1): 10-25, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36383204

ABSTRACT

Our understanding of when hominins first reached northern Europe is dependent on a fragmented archaeological and fossil record known from as early as marine isotope stage (MIS) 21 or 25 (c. 840 or 950 thousand years ago [Ka]). This contrasts sharply with southern Europe, where hominin occupation is evidenced from MIS 37 to 45 (c. 1.22 or 1.39 million years ago [Ma]). Northern Europe, however, exhibits climatic, geological, demographic, and historical disadvantages when it comes to preserving fossil and archaeological evidence of early hominin habitation. It is argued here that perceived differences in first occupation timings between the two European regions needs to be revised in light of these factors. To enhance this understanding, optimal linear estimation models are run using data from the current fossil and artefact record. Results suggest northern Europe to have first been occupied as early as 1.16 Ma, or as late as 913 Ka. These timings could represent minimum date expectations and be extended through future archaeological and fossil discoveries.


Subject(s)
Hominidae , Animals , Europe , Fossils , Archaeology
6.
Sci Rep ; 12(1): 15000, 2022 Oct 13.
Article in English | MEDLINE | ID: mdl-36229473

ABSTRACT

Recent fossil discoveries suggest that Neandertals and Homo sapiens may have co-existed in Europe for as long as 5 to 6000 years. Yet, evidence for their contemporaneity at any regional scale remains highly elusive. In France and northern Spain, a region which features some of the latest directly-dated Neandertals in Europe, Protoaurignacian assemblages attributed to Homo sapiens appear to 'replace' Neandertal-associated Châtelperronian assemblages. Using the earliest and latest known occurrences as starting points, Bayesian modelling has provided indication that these occupations may in fact have been partly contemporaneous. The reality, however, is that we are unlikely to ever identify the 'first' or 'last' appearance of a species or cultural tradition in the archaeological and fossil record. Here, we use optimal linear estimation modelling to estimate the first appearance date of Homo sapiens and the extinction date of Neandertals in France and northern Spain by statistically inferring these 'missing' portions of the Protoaurignacian and Châtelperronian archaeological records. Additionally, we estimate the extinction date of Neandertals in this region using a dataset of directly-dated Neandertal fossil remains. Our total dataset consists of sixty-six modernly produced radiocarbon determinations which we recalibrated using the newest calibration curve (IntCal20) to produce updated age ranges. The results suggest that the onset of the Homo sapiens occupation of this region likely preceded the extinction of Neandertals and the Châtelperronian by up to 1400-2900 years. This reaffirms the Bayesian-derived duration of co-existence between these groups during the initial Upper Palaeolithic of this region using a novel independent method, and indicates that our understanding of the timing of these occupations may not be suffering from substantial gaps in the record. Whether or not this co-existence featured some form of direct interaction, however, remains to be resolved.


Subject(s)
Hominidae , Neanderthals , Animals , Bayes Theorem , Fossils , France , Humans , Spain
7.
R Soc Open Sci ; 9(6): 211904, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35754990

ABSTRACT

Northern Europe experienced cycles of hominin habitation and absence during the Middle Pleistocene. Fluvial gravel terrace sites in the east of Britain and north of France provide a majority of the data contributing to this understanding, mostly through the presence or absence of stone-tool artefacts. To date, however, relatively few sites have been radiometrically dated, and many have not been excavated in modern times, leading to an over-reliance on selectively sampled and poorly dated lithic assemblages. This includes Fordwich (Kent, UK), where over 330 bifaces were discovered through industrial quarrying in the 1920s. Here, we present the first excavation and dating of artefacts discovered in situ at Fordwich, alongside their technological analysis and relationship to those previously recovered. The site is demonstrated to retain deposits of Lower Palaeolithic artefacts, with 251 flakes, scrapers and cores identified to date. Infrared-radiofluorescence (IR-RF) dating of feldspar reveals 112 artefacts to have come from levels dating to at least 570 ± 36 to 513 ± 30 thousand years ago (ka) and are most plausibly assigned to an MIS 14 deposition, with artefacts produced during MIS 15 (approx. 560-620 ka). Indeed, these IR-RF samples provide minimum ages for artefacts. Combined with evidence from exposures linked to the original quarrying activities, a similar MIS 15 age is suggested for the more than 330 handaxe artefacts discovered in the 1920s. The remaining excavated artefacts come from levels dated to between 347 ± 22 and 385 ± 21 ka (MIS 10 or 11), with this later age interpreted to reflect post-MIS 14 deposition by substrate gullying and solifluction. These data demonstrate Fordwich to be one of the earliest Palaeolithic sites in northwestern Europe, and to retain the only large Acheulean handaxe assemblage directly dated to pre-MIS 13. Thus, Fordwich is determined to be a crucial piece of the pre-Anglian Palaeolithic puzzle in northern Europe.

8.
J Hum Evol ; 154: 102976, 2021 05.
Article in English | MEDLINE | ID: mdl-33773284

ABSTRACT

Identifying when hominins first produced Lomekwian, Oldowan, and Acheulean technologies is vital to multiple avenues of human origins research. Yet, like most archaeological endeavors, our understanding is currently only as accurate as the artifacts recovered and the sites identified. Here we use optimal linear estimation (OLE) modelling to identify the portion of the archaeological record not yet discovered, and statistically infer the date of origin of the earliest flaked stone technologies. These models provide the most accurate framework yet for understanding when hominins first produced these tool types. Our results estimate the Oldowan to have originated 2.617 to 2.644 Ma, 36,000 to 63,000 years earlier than current evidence. The Acheulean's origin is pushed back further through OLE, by at least 55,000 years to 1.815 to 1.823 Ma. We were unable to infer the Lomekwian's date of origin using OLE, but an upper bound of 5.1 million years can be inferred using alternative nonparametric techniques. These dates provide a new chronological foundation from which to understand the emergence of the first flaked stone technologies, alongside their behavioral and evolutionary implications. Moreover, they suggest there to be substantial portions of the artifact record yet to be discovered.


Subject(s)
Archaeology , Hominidae , Technology , Animals , Biological Evolution , History, Ancient , Humans
9.
Am J Phys Anthropol ; 174(4): 714-727, 2021 04.
Article in English | MEDLINE | ID: mdl-33107044

ABSTRACT

OBJECTIVES: As is the case among many complex motor tasks that require prolonged practice before achieving expertise, aspects of the biomechanics of knapping vary according to the relative experience/skill level of the practitioner. In archaeological experiments focused on the production of Plio-Pleistocene stone tools, these skill-mediated biomechanical differences have bearings on experimental design, the interpretation of results, and lithic assemblage analysis. A robust body of work exists on variation in kinematic patterns across skill levels but less is known about potential kinetic differences. The current study was undertaken to better understand kinetic patterns observed across skill levels during "Oldowan," freehand stone tool production. MATERIALS AND METHODS: Manual pressure data were collected from 23 novice and 9 expert stone tool makers during the production of simple stone flakes using direct hard hammer percussion. RESULTS: Results show that expert tool makers experienced significantly lower cumulative pressure magnitudes and pressure-time integral magnitudes compared with novices. In expert knappers, digits I and II experienced similarly high pressures (both peak pressure and pressure-time integrals) and low variability in pressure relative to digits III-V. Novices, in contrast, tended to hold hammerstones such that pressure patterns were similar across digits II-V, and they showed low variability on digit I only. DISCUSSION: The similar and consistent emphasis of the thumb by both skill groups indicates the importance of this digit in stabilizing the hammerstone. The emphasis placed on digit II is exclusive to expert knappers, and so this digit may offer osteological signals diagnostic of habitual expert tool production.


Subject(s)
Biomechanical Phenomena/physiology , Technology/history , Tool Use Behavior/physiology , Adolescent , Adult , Anthropology, Physical , History, Ancient , Humans , Young Adult
10.
J Hum Evol ; 144: 102796, 2020 07.
Article in English | MEDLINE | ID: mdl-32470872

ABSTRACT

Ergonomic relationships that minimize muscle activity relative to the creation of cutting stress underpin the design of modern knives, saws, and axes. The Palaeolithic archaeological record, and the > 3 million years of technological behavior that it represents, is predominantly characterized by sharp stone implements used for cutting. To date, we do not know whether Palaeolithic hominins adhered to ergonomic principles when designing stone tools, if lithic technological transitions were linked to ease-of-use advances, or even how muscularly demanding different Palaeolithic tools are on an empirically defined relative basis. Here, we report the results of an experimental program that examines how four key stone tool types, produced between ∼ 3.3 million and ∼ 40 thousand years ago, influence muscle activation in the hominin upper limb. Using standardized laboratory-based tests designed to imitate Pleistocene cutting behaviors, surface electromyography recorded electrical activity (amplitude) in nine muscles across the hand, forearm and shoulder of modern humans during the use of replica Lomekwian, Oldowan, Acheulean and Mousterian stone tools. Results confirm digit flexors and abductors, particularly the first dorsal interosseous and flexor pollicis longus, to be the most heavily recruited muscles during the use of all tool types. Significant differences in muscle activation are, however, identified dependent on the type of stone tool used. Notably, the abductor digiti minimi, flexor pollicis longus, and biceps brachii were highly activated during handaxe use, particularly when compared to the use of Oldowan and Levallois flakes. Results are discussed in light of current understanding on the origin of Lower and Middle Palaeolithic technologies, why specific tool types were produced over others during these periods, and the extent to which early hominins produced ergonomically designed tools.


Subject(s)
Archaeology , Biological Evolution , Ergonomics , Hominidae , Muscle, Skeletal/physiology , Technology , Tool Use Behavior , Animals , Electromyography , Forearm , Hand , Humans , Neanderthals , Shoulder
11.
PLoS One ; 15(3): e0230348, 2020.
Article in English | MEDLINE | ID: mdl-32182279

ABSTRACT

Before Europeans arrived to Eastern North America, prehistoric, indigenous peoples experienced a number of changes that culminated in the development of sedentary, maize agricultural lifeways of varying complexity. Inherent to these lifeways were several triggers of social stress including population nucleation and increase, intergroup conflict (warfare), and increased territoriality. Here, we examine whether this period of social stress co-varied with deadlier weaponry, specifically, the design of the most commonly found prehistoric archery component in late pre-contact North America: triangular stone arrow tips (TSAT). The examination of modern metal or carbon projectiles, arrows, and arrowheads has demonstrated that smaller arrow tips penetrate deeper into a target than do larger ones. We first experimentally confirm that this relationship applies to arrow tips made from stone hafted onto shafts made from wood. We then statistically assess a large sample (n = 742) of late pre-contact TSAT and show that these specimens are extraordinarily small. Thus, by miniaturizing their arrow tips, prehistoric people in Eastern North America optimized their projectile weaponry for maximum penetration and killing power in warfare and hunting. Finally, we verify that these functional advantages were selected across environmental and cultural boundaries. Thus, while we cannot and should not rule out stochastic, production economizing, or non-adaptive cultural processes as an explanation for TSAT, overall our results are consistent with the hypothesis that broad, socially stressful demographic changes in late pre-contact Eastern North America resulted in the miniaturization-and augmented lethality-of stone tools across the region.


Subject(s)
Indians, North American/history , Miniaturization , Sociological Factors , Warfare/history , Weapons/history , Archaeology , History, Ancient , Humans , Indians, North American/psychology , North America , Population Growth , Warfare/psychology
12.
J R Soc Interface ; 17(162): 20190377, 2020 01.
Article in English | MEDLINE | ID: mdl-31910772

ABSTRACT

For more than 1.8 million years hominins at Olduvai Gorge were faced with a choice: whether to use lavas, quartzite or chert to produce stone tools. All are available locally and all are suitable for stone tool production. Using controlled cutting tests and fracture mechanics theory we examine raw material selection decisions throughout Olduvai's Early Stone Age. We quantify the force, work and material deformation required by each stone type when cutting, before using these data to compare edge sharpness and durability. Significant differences are identified, confirming performance to depend on raw material choice. When combined with artefact data, we demonstrate that Early Stone Age hominins optimized raw material choices based on functional performance characteristics. Doing so flexibly: choosing raw materials dependent on their sharpness and durability, alongside a tool's loading potential and anticipated use-life. In this way, we demonstrate that early lithic artefacts at Olduvai Gorge were engineered to be functionally optimized cutting tools.


Subject(s)
Hominidae , Animals , Fossils , Tanzania
13.
Sci Rep ; 9(1): 16724, 2019 11 13.
Article in English | MEDLINE | ID: mdl-31723201

ABSTRACT

Unique anatomical features of the human hand facilitate our ability to proficiently and forcefully perform precision grips and in-hand manipulation of objects. Extensive research has been conducted into the role of digits one to three during these manual behaviours, and the origin of the highly derived first digit anatomy that facilitates these capabilities. Stone tool production has long been thought a key influence in this regard. Despite previous research stressing the unique derived morphology of the human fifth digit little work has investigated why humans alone display these features. Here we examine the recruitment frequency, loading magnitude, and loading distribution of all digits on the non-dominant hand of skilled flintknappers during four technologically distinct types of Lower Palaeolithic stone tool production. Our data reveal the fifth digit to be heavily and frequently recruited during all studied behaviours. It occasionally incurred pressures, and was used in frequencies, greater or equal to those of the thumb, and frequently the same or greater than those of the index finger. The fifth digit therefore appears key to >2 million years of stone tool production activities, a behaviour that likely contributed to the derived anatomy observed in the modern human fifth ray.

14.
Sci Rep ; 9(1): 5756, 2019 04 08.
Article in English | MEDLINE | ID: mdl-30962475

ABSTRACT

Most prehistoric societies that experimented with copper as a tool raw material eventually abandoned stone as their primary medium for tool making. However, after thousands of years of experimentation with this metal, North American hunter-gatherers abandoned it and returned to the exclusive use of stone. Why? We experimentally confirmed that replica copper tools are inferior to stone ones when each is sourced in the same manner as their archaeological counterparts and subjected to identical tasks. Why, then, did copper consistently lead to more advanced metallurgy in most other areas of the world? We suggest that it was the unusual level of purity in the North American copper sourced by North American groups, and that naturally occurring alloys yielded sufficiently superior tools to encourage entry into the copper-bronze-iron continuum of tool manufacture in other parts of the world.


Subject(s)
Metallurgy/history , Archaeology , Copper/history , History, Ancient , Humans , Iron/history
15.
J Hum Evol ; 125: 137-158, 2018 12.
Article in English | MEDLINE | ID: mdl-30322659

ABSTRACT

The suite of anatomical features contributing to the unique gripping capabilities of the modern human hand evolved alongside the proliferation of Lower Palaeolithic flaked tool technologies across the Old World. Experimental studies investigating their potential co-evolution suggest that the use of flakes, handaxes, and other stone tools is facilitated by manipulative capabilities consistent with the evolutionary trajectory of the hominin hand during this period. Grip analyses have provided important contributions to this understanding. To date, however, there has been no large-scale investigation of grip diversity during flaked stone-tool use, empirical comparative analyses of grip use frequencies, or examination of ergonomic relationships between grip choice and stone tool type and form. Here, we conduct four experimental studies, using replica Lower Palaeolithic stone tools in a series of actualistic and laboratory-based contexts, to record grip type and frequency of grip use during 1067 stone tool-use events by 123 individuals. Using detailed morphometric data recorded from each tool, we demonstrate how grip choice varies according to the type and form of stone tool used, and how these relationships differ between tool-use contexts. We identify 29 grip types across all tool-use events, with significant differences recorded in their frequency of use dependent on tool type, tool form, and the context of use. Despite the influence of these three factors, there is consistency in the frequent use of a limited number (≤4) of grip types within each experiment and the consistent and seemingly forceful recruitment of the thumb and index finger. Accordingly, we argue that there are deep-rooted, ergonomically-related, regularities in how stone tools are gripped during their use, that these regularities may have been present during the use of stone tools by Plio-Pleistocene hominins, and any subsequent selective pressures would likely have been focused on the first and second digit.


Subject(s)
Hand Strength , Hominidae/physiology , Animals , Archaeology , Female , Hand , Humans , Male , Technology
16.
PeerJ ; 6: e5399, 2018.
Article in English | MEDLINE | ID: mdl-30128191

ABSTRACT

The causes of technological innovation in the Palaeolithic archaeological record are central to understanding Plio-Pleistocene hominin behaviour and temporal trends in artefact variation. Palaeolithic archaeologists frequently investigate the Oldowan-Acheulean transition and technological developments during the subsequent million years of the Acheulean technocomplex. Here, we approach the question of why innovative stone tool production techniques occur in the Lower Palaeolithic archaeological record from an experimental biomechanical and evolutionary perspective. Nine experienced flintknappers reproduced Oldowan flake tools, 'early Acheulean' handaxes, and 'late Acheulean' handaxes while pressure data were collected from their non-dominant (core-holding) hands. For each flake removal or platform preparation event performed, the percussor used, the stage of reduction, the core securing technique utilised, and the relative success of flake removals were recorded. Results indicate that more heavily reduced, intensively shaped handaxes with greater volumetric controls do not necessarily require significantly greater manual pressure than Oldowan flake tools or earlier 'rougher' handaxe forms. Platform preparation events do, however, require significantly greater pressure relative to either soft or hard hammer flake detachments. No significant relationships were identified between flaking success and pressure variation. Our results suggest that the preparation of flake platforms, a technological behaviour associated with the production of late Acheulean handaxes, could plausibly have been restricted prior to the emergence of more forceful precision-manipulative capabilities than those required for earlier lithic technologies.

17.
J Hum Evol ; 119: 14-26, 2018 06.
Article in English | MEDLINE | ID: mdl-29685751

ABSTRACT

It is widely agreed that biomechanical stresses imposed by stone tool behaviors influenced the evolution of the human hand. Though archaeological evidence suggests that early hominins participated in a variety of tool behaviors, it is unlikely that all behaviors equally influenced modern human hand anatomy. It is more probable that a behavior's likelihood of exerting a selective pressure was a weighted function of the magnitude of stresses associated with that behavior, the benefits received from it, and the amount of time spent performing it. Based on this premise, we focused on the first part of that equation and evaluated magnitudes of stresses associated with stone tool behaviors thought to have been commonly practiced by early hominins, to determine which placed the greatest loads on the digits. Manual pressure data were gathered from 39 human subjects using a Novel Pliance® manual pressure system while they participated in multiple Plio-Pleistocene tool behaviors: nut-cracking, marrow acquisition with a hammerstone, flake production with a hammerstone, and handaxe and flake use. Manual pressure distributions varied significantly according to behavior, though there was a tendency for regions of the hand subject to the lowest pressures (e.g., proximal phalanges) to be affected less by behavior type. Hammerstone use during marrow acquisition and flake production consistently placed the greatest loads on the digits collectively, on each digit and on each phalanx. Our results suggest that, based solely on the magnitudes of stresses, hammerstone use during marrow acquisition and flake production are the most likely of the assessed behaviors to have influenced the anatomical and functional evolution of the human hand.


Subject(s)
Biological Evolution , Hand , Hominidae , Tool Use Behavior , Adult , Animals , Archaeology , Biomechanical Phenomena , Female , Humans , Male , Pressure , Young Adult
18.
J Anthropol Sci ; 95: 67-108, 2017 Dec 30.
Article in English | MEDLINE | ID: mdl-28758891

ABSTRACT

Percussively flaked stone artefacts constitute a major source of evidence relating to hominin behavioural strategies and are, essentially, a product or byproduct of a past individual's decision to create a tool with respect to some broader goal. Moreover, it has long been noted that both differences and recurrent regularities exist within and between Palaeolithic stone artefact forms. Accordingly, archaeologists have frequently drawn links between form and functionality, with functional objectives and performance often being regarded consequential to a stone tool's morphological properties. Despite these factors, extensive reviews of the related concepts of form and function with respect to the Lower Palaeolithic remain surprisingly sparse. We attempt to redress this issue. First we stress the historical place of form-function concepts, and their role in establishing basic ideas that echo to this day. We then highlight methodological and conceptual progress in determining artefactual function in more recent years. Thereafter, we evaluate four specific issues that are of direct consequence for evaluating the ongoing relevance of form-function concepts, especially with respect to their relevance for understanding human evolution more generally. Our discussion highlights specifically how recent developments have been able to build on a long historical legacy, and demonstrate that direct, indirect, experimental, and evolutionary perspectives intersect in crucial ways, with each providing specific but essential insights for ongoing questions. We conclude by emphasising that our understanding of these issues and their interaction, has been, and will be, essential to accurately interpret the Lower Palaeolithic archaeological record, tool-form related behaviours of Lower Palaeolithic hominins, and their consequences for (and relationship to) wider questions of human evolution.


Subject(s)
Biological Evolution , Fossils , Hominidae/physiology , Tool Use Behavior , Animals , Archaeology , Belgium , France , History, Ancient , Technology/history
19.
PLoS One ; 11(10): e0163801, 2016.
Article in English | MEDLINE | ID: mdl-27695044

ABSTRACT

The human hand is unparalleled amongst primates in its ability to manipulate objects forcefully and dexterously. Previous research has predominantly sought to explain the evolution of these capabilities through an adaptive relationship between more modern human-like anatomical features in the upper limb and increased stone tool production and use proficiency. To date, however, we know little about the influence that other manipulatively demanding behaviors may have had upon the evolution of the human hand. The present study addresses one aspect of this deficiency by examining the recruitment of the distal phalanges during a range of manual transportation (i.e., carrying) events related to hominin behavioral repertoires during the Plio-Pleistocene. Specifically, forces on the volar pad of each digit are recorded during the transportation of stones and wooden branches that vary in weight and size. Results indicate that in most instances, the index and middle fingers are recruited to a significantly greater extent than the other three digits during carrying events. Relative force differences between digits were, however, dependent upon the size and weight of the object transported. Carrying behaviors therefore appear unlikely to have contributed to the evolution of the robust thumb anatomy observed in the human hand. Rather, results suggest that the manual transportation of objects may plausibly have influenced the evolution of the human gripping capabilities and the 3rd metacarpal styloid process.


Subject(s)
Biological Evolution , Fingers/anatomy & histology , Hand/anatomy & histology , Hominidae/physiology , Thumb/anatomy & histology , Animals , Biomechanical Phenomena , Fossils , Hominidae/genetics , Humans , Metacarpal Bones/anatomy & histology , Primates , Tool Use Behavior/physiology
20.
J Hum Evol ; 78: 60-9, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25200887

ABSTRACT

Modern humans possess a highly derived thumb that is substantially stronger and more robust than the fingers. Previous hypotheses concerning the evolution of such traits have focused upon the manipulation of hammerstones during stone tool production and of stone tools during their use. To date there has been no research on the manipulative pressures exerted by the non-dominant (core-holding) hand during stone tool production and its potential influence on the evolutionary history of the thumb. Here we provide the first investigation into the frequencies of digit recruitment and the relative manipulative forces experienced in the non-dominant hand during stone tool production. Eight experienced knappers produced flake cutting tools under four distinct conditions while pressure sensors, secured to the volar pads of the thumb, index and middle fingers of the non-dominant hand, recorded manipulative forces. Results indicate that relative to the fingers, the thumb was recruited significantly more frequently and experienced significantly greater manipulative forces during core repositioning events and the securing of the core during flake detachments. Our results support the hypothesis that the robust thumb anatomy observed in the hominin lineage was selected for, at least in part, as a result of more frequent and greater manipulative pressures acting upon the thumb relative to the fingers on the non-dominant hand during stone tool production.


Subject(s)
Biological Evolution , Biomechanical Phenomena/physiology , Models, Biological , Thumb/physiology , Tool Use Behavior/physiology , Analysis of Variance , Animals , Anthropology, Physical , Hominidae , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...