Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Med Chem ; 52(21): 6515-8, 2009 Nov 12.
Article in English | MEDLINE | ID: mdl-19831390

ABSTRACT

The discovery of a pyrrolopyrimidine class of LIM-kinase 2 (LIMK2) inhibitors is reported. These LIMK2 inhibitors show good potency in enzymatic and cellular assays and good selectivity against ROCK. After topical dosing to the eye in a steroid induced mouse model of ocular hypertension, the compounds reduce intraocular pressure to baseline levels. The compounds also increase outflow facility in a pig eye perfusion assay. These results suggest LIMK2 may be an effective target for treating ocular hypertension and associated glaucoma.


Subject(s)
Antihypertensive Agents/chemical synthesis , Lim Kinases/antagonists & inhibitors , Ocular Hypertension/drug therapy , Pyrimidines/chemical synthesis , Pyrroles/chemical synthesis , Administration, Topical , Animals , Antihypertensive Agents/chemistry , Antihypertensive Agents/pharmacology , Glaucoma/drug therapy , Glaucoma/physiopathology , Guanidines/chemical synthesis , Guanidines/chemistry , Guanidines/pharmacology , In Vitro Techniques , Intraocular Pressure/drug effects , Mice , Nitriles/chemical synthesis , Nitriles/chemistry , Nitriles/pharmacology , Ocular Hypertension/chemically induced , Ocular Hypertension/physiopathology , Piperazines/chemical synthesis , Piperazines/chemistry , Piperazines/pharmacology , Pyrimidines/chemistry , Pyrimidines/pharmacology , Pyrroles/chemistry , Pyrroles/pharmacology , Structure-Activity Relationship , Swine , Urea/analogs & derivatives , Urea/chemical synthesis , Urea/chemistry , Urea/pharmacology
2.
J Lipid Res ; 50(12): 2421-9, 2009 Dec.
Article in English | MEDLINE | ID: mdl-19542565

ABSTRACT

Glycosylphosphatidylinositol-anchored HDL-binding protein (GPIHBP1) binds both LPL and chylomicrons, suggesting that GPIHBP1 is a platform for LPL-dependent processing of triglyceride (TG)-rich lipoproteins. Here, we investigated whether GPIHBP1 affects LPL activity in the absence and presence of LPL inhibitors angiopoietin-like (ANGPTL)3 and ANGPTL4. Like heparin, GPIHBP1 stabilized but did not activate LPL. ANGPTL4 potently inhibited nonstabilized LPL as well as heparin-stabilized LPL but not GPIHBP1-stabilized LPL. Like ANGPTL4, ANGPTL3 inhibited nonstabilized LPL but not GPIHBP1-stabilized LPL. ANGPTL3 also inhibited heparin-stabilized LPL but with less potency than nonstabilized LPL. Consistent with these in vitro findings, fasting serum TGs of Angptl4(-/-)/Gpihbp1(-/-) mice were lower than those of Gpihbp1(-/-) mice and approached those of wild-type littermates. In contrast, serum TGs of Angptl3(-/-)/Gpihbp1(-/-) mice were only slightly lower than those of Gpihbp1(-/-) mice. Treating Gpihbp1(-/-) mice with ANGPTL4- or ANGPTL3-neutralizing antibodies recapitulated the double knockout phenotypes. These data suggest that GPIHBP1 functions as an LPL stabilizer. Moreover, therapeutic agents that prevent LPL inhibition by ANGPTL4 or, to a lesser extent, ANGPTL3, may benefit individuals with hyperlipidemia caused by gene mutations associated with decreased LPL stability.


Subject(s)
Angiopoietins/metabolism , Carrier Proteins/metabolism , Lipoprotein Lipase/metabolism , Receptors, Lipoprotein/metabolism , Angiopoietin-Like Protein 3 , Angiopoietin-Like Protein 4 , Angiopoietin-like Proteins , Angiopoietins/deficiency , Animals , Cattle , Enzyme Stability , Humans , Lipoprotein Lipase/antagonists & inhibitors , Mice , Mice, Knockout , Receptors, Lipoprotein/deficiency , Recombinant Proteins/metabolism
3.
Proc Natl Acad Sci U S A ; 104(28): 11766-71, 2007 Jul 10.
Article in English | MEDLINE | ID: mdl-17609370

ABSTRACT

We used gene knockout mice to explore the role of Angiopoietin-like-4 (Angptl4) in lipid metabolism as well as to generate anti-Angptl4 mAbs with pharmacological activity. Angptl4 -/- mice had lower triglyceride (TG) levels resulting both from increased very low-density lipoprotein (VLDL) clearance and decreased VLDL production and had modestly lower cholesterol levels. Also, both Angptl4 -/- suckling mice and adult mice fed a high-fat diet showed reduced viability associated with lipogranulomatous lesions of the intestines and their draining lymphatics and mesenteric lymph nodes. Treating C57BL/6J, ApoE -/-, LDLr -/-, and db/db mice with the anti-Angptl4 mAb 14D12 recapitulated the lipid and histopathologic phenotypes noted in Angptl4 -/- mice. This demonstrates that the knockout phenotype reflects not only the physiologic function of the Angptl4 gene but also predicts the pharmacologic consequences of Angptl4 protein inhibition with a neutralizing antibody in relevant models of human disease.


Subject(s)
Antibodies, Monoclonal/administration & dosage , Blood Proteins/genetics , Blood Proteins/immunology , Hypolipidemic Agents/administration & dosage , Lipids/antagonists & inhibitors , Phenotype , Angiopoietin-Like Protein 4 , Angiopoietins , Animals , Antibodies, Blocking/administration & dosage , Antibodies, Blocking/biosynthesis , Antibodies, Monoclonal/biosynthesis , Blood Proteins/deficiency , Blood Proteins/physiology , Hypolipidemic Agents/metabolism , Hypolipidemic Agents/therapeutic use , Lipids/biosynthesis , Lipids/blood , Lipoproteins, VLDL/antagonists & inhibitors , Lipoproteins, VLDL/blood , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Triglycerides/antagonists & inhibitors , Triglycerides/blood
4.
Proc Natl Acad Sci U S A ; 100(24): 14109-14, 2003 Nov 25.
Article in English | MEDLINE | ID: mdl-14610273

ABSTRACT

The availability of both the mouse and human genome sequences allows for the systematic discovery of human gene function through the use of the mouse as a model system. To accelerate the genetic determination of gene function, we have developed a sequence-tagged gene-trap library of >270,000 mouse embryonic stem cell clones representing mutations in approximately 60% of mammalian genes. Through the generation and phenotypic analysis of knockout mice from this resource, we are undertaking a functional screen to identify genes regulating physiological parameters such as blood pressure. As part of this screen, mice deficient for the Wnk1 kinase gene were generated and analyzed. Genetic studies in humans have shown that large intronic deletions in WNK1 lead to its overexpression and are responsible for pseudohypoaldosteronism type II, an autosomal dominant disorder characterized by hypertension, increased renal salt reabsorption, and impaired K+ and H+ excretion. Consistent with the human genetic studies, Wnk1 heterozygous mice displayed a significant decrease in blood pressure. Mice homozygous for the Wnk1 mutation died during embryonic development before day 13 of gestation. These results demonstrate that Wnk1 is a regulator of blood pressure critical for development and illustrate the utility of a functional screen driven by a sequence-based mutagenesis approach.


Subject(s)
Blood Pressure/physiology , Protein Serine-Threonine Kinases/deficiency , Animals , Base Sequence , Blood Pressure/genetics , DNA, Complementary/genetics , Gene Library , Genetic Techniques , Heterozygote , Humans , Hypertension/therapy , Intracellular Signaling Peptides and Proteins , Mice , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Minor Histocompatibility Antigens , Molecular Sequence Data , Mutagenesis, Insertional/methods , Phenotype , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/physiology , Sequence Tagged Sites , WNK Lysine-Deficient Protein Kinase 1
SELECTION OF CITATIONS
SEARCH DETAIL
...