Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Comb Sci ; 17(4): 239-46, 2015 Apr 13.
Article in English | MEDLINE | ID: mdl-25719760

ABSTRACT

Protein-protein interactions are generally challenging to target by small molecules. To address the challenge, we have used a multidisciplinary approach to identify small-molecule disruptors of protein-protein interactions that are mediated by SUMO (small ubiquitin-like modifier) proteins. SUMO modifications have emerged as a target with importance in treating cancer, neurodegenerative disorders, and viral infections. It has been shown that inhibiting SUMO-mediated protein-protein interactions can sensitize cancer cells to chemotherapy and radiation. We have developed highly sensitive assays using time-resolved fluorescence resonance energy transfer (TR-FRET) and fluorescence polarization (FP) that were used for high-throughput screening (HTS) to identify inhibitors for SUMO-dependent protein-protein interactions. Using these assays, we have identified a nonpeptidomimetic small molecule chemotype that binds to SUMO1 but not SUMO2 or 3. NMR chemical shift perturbation studies have shown that the compounds of this chemotype bind to the SUMO1 surface required for protein-protein interaction, despite the high sequence similarity of SUMO1 and SUMO2 and 3 at this surface.


Subject(s)
Fluorescence Resonance Energy Transfer , Small Ubiquitin-Related Modifier Proteins/chemistry , Amino Acid Motifs , Binding Sites , Ligands , Magnetic Resonance Spectroscopy , Models, Molecular , Protein Binding , Protein Conformation
2.
J Biomol Screen ; 17(10): 1279-92, 2012 Dec.
Article in English | MEDLINE | ID: mdl-22904200

ABSTRACT

Histone methyltransferases (HMT) catalyze the methylation of histone tail lysines, resulting in changes in gene transcription. Misregulation of these enzymes has been associated with various forms of cancer, making this target class a potential new area for the development of novel chemotherapeutics. EZH2 is the catalytic component of the polycomb group repressive complex (PRC2), which selectively methylates histone H3 lysine 27 (H3K27). EZH2 is overexpressed in prostate, breast, bladder, brain, and other tumor types and is recognized as a molecular marker for cancer progression and aggressiveness. Several new reagents and assays were developed to aid in the identification of EZH2 inhibitors, and these were used to execute two high-throughput screening campaigns. Activity assays using either an H3K27 peptide or nucleosomes as substrates for methylation are described. The strategy to screen EZH2 with either a surrogate peptide or a natural substrate led to the identification of the same tractable series. Compounds from this series are reversible, are [(3)H]-S-adenosyl-L-methionine competitive, and display biochemical inhibition of H3K27 methylation.


Subject(s)
High-Throughput Screening Assays/methods , Nucleosomes/metabolism , Peptides/metabolism , Polycomb Repressive Complex 2/metabolism , Drug Screening Assays, Antitumor/methods , Enhancer of Zeste Homolog 2 Protein , Humans , Indicators and Reagents , Kinetics , Peptides/antagonists & inhibitors , Polycomb Repressive Complex 2/antagonists & inhibitors , Polycomb Repressive Complex 2/chemistry , Reproducibility of Results
SELECTION OF CITATIONS
SEARCH DETAIL
...