Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Geophys J Int ; 234(3): 2412-2429, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37416748

ABSTRACT

The dynamics of accretionary prisms and the processes that take place along subduction interfaces are controlled, in part, by the porosity and fluid overpressure of both the forearc wedge and the sediments transported to the system by the subducting plate. The Hikurangi Margin, located offshore the North Island of New Zealand, is a particularly relevant area to investigate the interplay between the consolidation state of incoming plate sediments, dewatering and fluid flow in the accretionary wedge and observed geodetic coupling and megathrust slip behaviour along the plate interface. In its short geographic extent, the margin hosts a diversity of properties that impact subduction processes and that transition from north to south. Its southernmost limit is characterized by frontal accretion, thick sediment subduction, the absence of seafloor roughness, strong interseismic coupling and deep slow slip events. Here we use seafloor magnetotelluric (MT) and controlled-source electromagnetic (CSEM) data collected along a profile through the southern Hikurangi Margin to image the electrical resistivity of the forearc and incoming plate. Resistive anomalies in the shallow forearc likely indicate the presence of gas hydrates, and we relate deeper forerarc resistors to thrust faulting imaged in colocated seismic reflection data. Because MT and CSEM data are highly sensitive to fluid phases in the pore spaces of seafloor sediments and oceanic crust, we convert resistivity to porosity to obtain a representation of fluid distribution along the profile. We show that porosity predicted by the resistivity data can be well fit by an exponential sediment compaction model. By removing this compaction trend from the porosity model, we are able to evaluate the second-order, lateral changes in porosity, an approach that can be applied to EM data sets from other sedimentary basins. Using this porosity anomaly model, we examine the consolidation state of the incoming plate and accretionary wedge sediments. A decrease in porosity observed in the sediments approaching the trench suggests that a protothrust zone is developing ∼25 km seaward of the frontal thrust. Our data also imply that sediments deeper in the accretionary wedge are slightly underconsolidated, which may indicate incomplete drainage and elevated fluid overpressures of the deep wedge.

2.
Science ; 376(6593): 640-644, 2022 05 06.
Article in English | MEDLINE | ID: mdl-35511981

ABSTRACT

Antarctica's fast-flowing ice streams drain the ice sheet, with their velocity modulated by subglacial water systems. Current knowledge of these water systems is limited to the shallow portions near the ice-bed interface, but hypothesized deeper groundwater could also influence ice streaming. Here, we use magnetotelluric and passive seismic data from Whillans Ice Stream, West Antarctica, to provide the first observations of deep sub-ice stream groundwater. Our data reveal a volume of groundwater within a >1-kilometer-thick sedimentary basin that is more than an order of magnitude larger than the known subglacial system. A vertical salinity gradient indicates exchange between paleo seawater at depth and contemporary basal meltwater above. Our results provide new constraints for subglacial water systems that affect ice streaming and subglacial biogeochemical processes.

3.
Nature ; 604(7906): 491-494, 2022 04.
Article in English | MEDLINE | ID: mdl-35444326

ABSTRACT

Plate tectonics requires a low-viscosity layer beneath the lithosphere-asthenosphere boundary (LAB), yet the origin of this ductile transition remains debated1,2. Explanations include the weakening effects of increasing temperature3,4, mineral hydration5 or partial melt6. Electrical resistivity is sensitive to all three effects7, including melt volatile content8, but previous LAB constraints from magnetotelluric soundings did not simultaneously consider the thermodynamic stability of the inferred amount of melt and the effect of uncertainty in the estimated resistivity8-14. Here we couple an experimentally constrained parameterization of mantle melting in the presence of volatiles15,16 with Bayesian resistivity inversion17 and apply this to magnetotelluric data sensitive to a LAB channel beneath the Cocos Plate9. Paradoxically, we find that the conductive channel requires either anomalously large melt fractions with moderate volatile contents or moderate melt fractions with anomalously large volatile contents, depending on the assumed mantle temperature. Large melt fractions are unlikely to be mechanically stable and conflict with melt-migration models18. As large volatile contents require a highly enriched mantle source inconsistent with mid-ocean-ridge estimates19, our results indicate that a mantle plume emplaced volatile-rich melts in the LAB channel. This requires the presence of a previously undetected nearby plume or the influence of the distant Galápagos hotspot. Plumes that feed thin, hydrous melt channels9,14,20 may be an unrecognized source of LAB anomalies globally.

4.
Nature ; 595(7866): 255-260, 2021 07.
Article in English | MEDLINE | ID: mdl-34234336

ABSTRACT

The role of subducting topography on the mode of fault slip-particularly whether it hinders or facilitates large megathrust earthquakes-remains a controversial topic in subduction dynamics1-5. Models have illustrated the potential for subducting topography to severely alter the structure, stress state and mechanics of subduction zones4,6; however, direct geophysical imaging of the complex fracture networks proposed and the hydrology of both the subducting topography and the associated upper plate damage zones remains elusive. Here we use passive and controlled-source seafloor electromagnetic data collected at the northern Hikurangi Margin, New Zealand, to constrain electrical resistivity in a region of active seamount subduction. We show that a seamount on the incoming plate contains a thin, low-porosity basaltic cap that traps a conductive matrix of porous volcaniclastics and altered material over a resistive core, which allows 3.2 to 4.7 times more water to subduct, compared with normal, unfaulted oceanic lithosphere. In the forearc, we image a sediment-starved plate interface above a subducting seamount with similar electrical structure to the incoming plate seamount. A sharp resistive peak within the subducting seamount lies directly beneath a prominent upper plate conductive anomaly. The coincidence of this upper plate anomaly with the location of burst-type repeating earthquakes and seismicity associated with a recent slow slip event7 directly links subducting topography to the creation of fluid-rich damage zones in the forearc that alter the effective normal stress at the plate interface by modulating the fluid overpressure. In addition to severely modifying the structure and physical conditions of the upper plate, subducting seamounts represent an underappreciated mechanism for transporting a considerable flux of water to the forearc and deeper mantle.


Subject(s)
Geologic Sediments , Oceans and Seas , Porosity , Water Movements , Earthquakes , Electromagnetic Fields , New Zealand , Volcanic Eruptions
5.
Geophys J Int ; 226(1): 548-563, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33994835

ABSTRACT

Bayesian inversion of electromagnetic data produces crucial uncertainty information on inferred subsurface resistivity. Due to their high computational cost, however, Bayesian inverse methods have largely been restricted to computationally expedient 1-D resistivity models. In this study, we successfully demonstrate, for the first time, a fully 2-D, trans-dimensional Bayesian inversion of magnetotelluric (MT) data. We render this problem tractable from a computational standpoint by using a stochastic interpolation algorithm known as a Gaussian process (GP) to achieve a parsimonious parametrization of the model vis-a-vis the dense parameter grids used in numerical forward modelling codes. The GP links a trans-dimensional, parallel tempered Markov chain Monte Carlo sampler, which explores the parsimonious model space, to MARE2DEM, an adaptive finite element forward solver. MARE2DEM computes the model response using a dense parameter mesh with resistivity assigned via the GP model. We demonstrate the new trans-dimensional GP sampler by inverting both synthetic and field MT data for 2-D models of electrical resistivity, with the field data example converging within 10 d on 148 cores, a non-negligible but tractable computational cost. For a field data inversion, our algorithm achieves a parameter reduction of over 32× compared to the fixed parameter grid used for the MARE2DEM regularized inversion. Resistivity probability distributions computed from the ensemble of models produced by the inversion yield credible intervals and interquartile plots that quantitatively show the non-linear 2-D uncertainty in model structure. This uncertainty could then be propagated to other physical properties that impact resistivity including bulk composition, porosity and pore-fluid content.

6.
Sci Rep ; 9(1): 8709, 2019 06 18.
Article in English | MEDLINE | ID: mdl-31213621

ABSTRACT

Low-salinity submarine groundwater contained within continental shelves is a global phenomenon. Mechanisms for emplacing offshore groundwater include glacial processes that drove water into exposed continental shelves during sea-level low stands and active connections to onshore hydrologic systems. While low-salinity groundwater is thought to be abundant, its distribution and volume worldwide is poorly understood due to the limited number of observations. Here we image laterally continuous aquifers extending 90 km offshore New Jersey and Martha's Vineyard, Massachusetts, on the U.S. Atlantic margin using new shallow water electromagnetic geophysical methods. Our data provide more continuous constraints on offshore groundwater than previous models and present evidence for a connection between the modern onshore hydrologic system and offshore aquifers. We identify clinoforms as a previously unknown structural control on the lateral extent of low-salinity groundwater and potentially a control on where low-salinity water rises into the seafloor. Our data suggest a continuous submarine aquifer system spans at least 350 km of the U.S. Atlantic coast and contains about 2800 km3 of low-salinity groundwater. Our findings can be used to improve models of past glacial, eustatic, tectonic, and geomorphic processes on continental shelves and provide insight into shelf geochemistry, biogeochemical cycles, and the deep biosphere.

7.
Nature ; 495(7442): 499-502, 2013 Mar 28.
Article in English | MEDLINE | ID: mdl-23538832

ABSTRACT

Melt generated by mantle upwelling is fundamental to the production of new oceanic crust at mid-ocean ridges, yet the forces controlling this process are debated. Passive-flow models predict symmetric upwelling due to viscous drag from the diverging tectonic plates, but have been challenged by geophysical observations of asymmetric upwelling that suggest anomalous mantle pressure and temperature gradients, and by observations of concentrated upwelling centres consistent with active models where buoyancy forces give rise to focused convective flow. Here we use sea-floor magnetotelluric soundings at the fast-spreading northern East Pacific Rise to image mantle electrical structure to a depth of about 160 kilometres. Our data reveal a symmetric, high-conductivity region at depths of 20-90 kilometres that is consistent with partial melting of passively upwelling mantle. The triangular region of conductive partial melt matches passive-flow predictions, suggesting that melt focusing to the ridge occurs in the porous melting region rather than along the shallower base of the thermal lithosphere. A deeper conductor observed east of the ridge at a depth of more than 100 kilometres is explained by asymmetric upwelling due to viscous coupling across two nearby transform faults. Significant electrical anisotropy occurs only in the shallowest mantle east of the ridge axis, where high vertical conductivity at depths of 10-20 kilometres indicates localized porous conduits. This suggests that a coincident seismic-velocity anomaly is evidence of shallow magma transport channels rather than deeper off-axis upwelling. We interpret the mantle electrical structure as evidence that plate-driven passive upwelling dominates this ridge segment, with dynamic forces being negligible.

SELECTION OF CITATIONS
SEARCH DETAIL
...