Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
EMBO J ; 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38898313

ABSTRACT

In cells, mRNAs are transported to and positioned at subcellular areas to locally regulate protein production. Recent studies have identified the kinesin-3 family member motor protein KIF1C as an RNA transporter. However, it is not clear how KIF1C interacts with RNA molecules. Here, we show that the KIF1C C-terminal tail domain contains an intrinsically disordered region (IDR) that drives liquid-liquid phase separation (LLPS). KIF1C forms dynamic puncta in cells that display physical properties of liquid condensates and incorporate RNA molecules in a sequence-selective manner. Endogenous KIF1C forms condensates in cellular protrusions, where mRNAs are enriched in an IDR-dependent manner. Purified KIF1C tail constructs undergo LLPS in vitro at near-endogenous nM concentrations and in the absence of crowding agents and can directly recruit RNA molecules. Overall, our work uncovers an intrinsic correlation between the LLPS activity of KIF1C and its role in mRNA positioning. In addition, the LLPS activity of KIF1C's tail represents a new mode of motor-cargo interaction that extends our current understanding of cytoskeletal motor proteins.

2.
bioRxiv ; 2023 Oct 23.
Article in English | MEDLINE | ID: mdl-37961614

ABSTRACT

The spatial distribution of mRNA is critical for local control of protein production. Recent studies have identified the kinesin-3 family member KIF1C as an RNA transporter. However, it is not clear how KIF1C interacts with RNA molecules. Here, we show that KIF1C's C-terminal tail domain is an intrinsically disordered region (IDR) containing a prion-like domain (PLD) that is unique compared to the C-terminal tails of other kinesin family members. In cells, KIF1C constructs undergo reversible formation of dynamic puncta that display physical properties of liquid condensates and incorporate RNA molecules in a sequence-selective manner. The IDR is necessary and sufficient for driving liquid-liquid phase separation (LLPS) but the condensate properties can be modulated by adjacent coiled-coil segments. The purified KIF1C IDR domain undergoes LLPS in vitro at near-endogenous nM concentrations in a salt-dependent manner. Deletion of the IDR abolished the ability of KIF1C to undergo LLPS and disrupted the distribution of mRNA cargoes to the cell periphery. Our work thus uncovers an intrinsic correlation between the LLPS activity of KIF1C and its role as an RNA transporter. In addition, as the first kinesin motor reported to undergo LLPS, our work reveals a previously uncharacterized mode of motor-cargo interaction that extends our understanding of the behavior of cytoskeletal motor proteins.

3.
Methods Mol Biol ; 2430: 3-16, 2022.
Article in English | MEDLINE | ID: mdl-35476322

ABSTRACT

Filamentous microtubules, polymers of the heterodimeric protein tubulins play one of the major roles in the emergent nano-biotechnological devices. To develop the feature of those devices, it is important to understand the function of microtubule in in vitro, hence, the availability of purified αß-tubulin is required. Additionally, fluorescently labeled tubulin has become a powerful approach for extensively studying the dynamics of these components. In this chapter, the process of purifying the heterodimeric αß-tubulin from porcine brain will be described, as well as the process of labeling of the purified tubulin with fluorescence dye.


Subject(s)
Fluorescent Dyes , Tubulin , Animals , Brain/metabolism , Fluorescence , Fluorescent Dyes/metabolism , Microtubules/metabolism , Swine , Tubulin/metabolism
4.
Methods Mol Biol ; 2430: 47-59, 2022.
Article in English | MEDLINE | ID: mdl-35476324

ABSTRACT

The filamentous cytoskeletal protein microtubule, a polymer of α and ß heterodimers of tubulin, plays major roles in intracellular transport as well as in vitro molecular actuation and transportation. Functionalization of tubulin dimers through covalent linkage facilitates utilization of microtubule in the nanobioengineering. Here we present a detailed description of the methodologies used to modify tubulin dimers with DNA strand and biotin through covalent interaction.


Subject(s)
Biotin , Tubulin , Biological Transport , Biotin/metabolism , DNA/metabolism , Microtubules/metabolism , Tubulin/metabolism
5.
Methods Mol Biol ; 2430: 193-203, 2022.
Article in English | MEDLINE | ID: mdl-35476333

ABSTRACT

In vitro gliding assay of the filamentous protein microtubule (MT) on a kinesin motor protein coated surface has appeared as a classic platform for studying active matters. At high densities, the gliding MTs spontaneously align and self-organize into fascinating large-scale patterns. Application of mechanical stimuli e.g., stretching stimuli to the MTs gliding on a kinesin-coated surface can modulate their self-organization and patterns according to the boundary conditions. Depending on the mode of stretching, MT at high densities change their moving direction and exhibit various kinds of patterns such as stream, zigzag and vortex pattern. In this chapter, we discuss detail procedures on how to apply mechanical stimuli to the moving MTs on a kinesin coated substrate.


Subject(s)
Kinesins , Microtubules , Dyneins/metabolism , Microtubules/metabolism
6.
Methods Mol Biol ; 2430: 231-240, 2022.
Article in English | MEDLINE | ID: mdl-35476336

ABSTRACT

Fabrication of molecular devices using biomolecules through biomimetic approaches has witnessed a surge in interest in recent years. DNA a versatile programmable material offers an opportunity to realize complicated operations through the designing of various nanostructures such as DNA origami. Here we describe the methods to use DNA origami for the self-assembly of the biomolecular motor system, microtubule (MT)-kinesin. A rodlike DNA origami motif facilitates the self-assembly of MTs into asters. A smooth muscle like molecular contraction system could be realized following the method where DNA mediated self-assembly of MTs permits dynamic contraction in the presence of kinesins through an energy dissipative process.


Subject(s)
Kinesins , Nanostructures , DNA/chemistry , Microtubules/chemistry , Muscle, Smooth , Nanostructures/chemistry
7.
Methods Mol Biol ; 2430: 219-230, 2022.
Article in English | MEDLINE | ID: mdl-35476335

ABSTRACT

Swarm robotics has been attracting much attention in recent years in the field of robotics. This chapter describes a methodology for the construction of molecular swarm robots through precise control of active self-assembly of microtubules (MTs). Detailed protocols are presented for the construction of molecular robots through conjugation of DNA to MTs and demonstration of swarming of the MTs. The swarming is mediated by DNA-based interaction and photoirradiation which act as processors and sensors respectively for the robots. Furthermore, the required protocols to utilize the swarming of MTs for molecular computation is also described.


Subject(s)
Robotics , Computers, Molecular , DNA/genetics , Microtubules , Robotics/methods
8.
Chem Commun (Camb) ; 56(57): 7953-7956, 2020 Jul 17.
Article in English | MEDLINE | ID: mdl-32537622

ABSTRACT

We regulate the persistency in motion of kinesin-driven microtubules (MTs) simply using a photoresponsive DNA (pDNA) and ultraviolet (UV)-visible light. The path persistence length of MTs, which is a measure of the persistency in their motion, increases and decreases upon illuminating the MTs with UV and visible light respectively. Moreover, pDNA is found to work as a shield for MTs against damage under UV irradiation.


Subject(s)
DNA/chemistry , Kinesins/chemistry , Microtubules/chemistry , Alkynes/chemistry , Azo Compounds/chemistry , Cycloaddition Reaction , Light , Motion , Photochemical Processes , Surface Properties , Ultraviolet Rays
9.
PLoS One ; 15(4): e0231352, 2020.
Article in English | MEDLINE | ID: mdl-32275729

ABSTRACT

We report the formation of spherulites from droplets of highly concentrated tubulin solution via nucleation and subsequent polymerization to microtubules (MTs) under water evaporation by heating. Radial alignment of MTs in the spherulites was confirmed by the optical properties of the spherulites observed using polarized optical microscopy and fluorescence microscopy. Temperature and concentration of tubulins were found as important parameters to control the spherulite pattern formation of MTs where evaporation plays a significant role. The alignment of MTs was regulated reversibly by temperature induced polymerization and depolymerization of tubulins. The formation of the MTs patterns was also confirmed at the molecular level from the small angle X-ray measurements. This work provides a simple method for obtaining radially aligned arrays of MTs.


Subject(s)
Microtubules/chemistry , Tubulin/chemistry , Animals , Hot Temperature , Microtubules/metabolism , Polymerization , Swine , Tubulin/metabolism , Volatilization , Water/chemistry
10.
Biophys Rev ; 12(2): 401-409, 2020 Apr.
Article in English | MEDLINE | ID: mdl-32125657

ABSTRACT

Biomolecular motor systems are the smallest natural machines with an ability to convert chemical energy into mechanical work with remarkably high efficiency. Such attractive features enabled biomolecular motors to become classic tools in soft matter research over the past decade. For designing suitably engineered biomimetic systems, the biomolecular motors can potentially be used as molecular engines that can transform energy and ensure great advantages for the construction of bio-nanodevices and molecular robots. From the optimization of their prolonged lifetime to coordinate them into highly complex and ordered structures, enormous efforts have been devoted to make them useful in the synthetic environment. Synchronous operation of the biomolecular engines is one of the key criteria to coordinate them into certain different patterns, which depends on the local interaction of biomolecular motors. Utilizing chemical and physical stimuli, synchronization of biomolecular motor systems has become possible, which allows them to coordinate into different higher ordered patterns with different modes of functionality. Recently, programmed synchronous operation of the biomolecular engines has also been demonstrated, using a smart biomaterial to build up swarms reminiscent of nature. Here, we review the recent progress in the synchronized operation of biomolecular motors in engineered systems to explicitly program their interaction and further their applications. Such developments in the coordination of biomolecular motors have opened a broad way to explore the construction of future autonomous molecular machines and robots based on synchronization of biomolecular engines.

11.
Sci Rep ; 8(1): 11756, 2018 08 06.
Article in English | MEDLINE | ID: mdl-30082825

ABSTRACT

Recently we demonstrated swarming of a self-propelled biomolecular motor system microtubule (MT)-kinesin where interactions among thousands of motile MTs were regulated in a highly programmable fashion by using DNA as a processor. However, precise control of this potential system is yet to be achieved to optimize the swarm behavior. In this work, we systematically controlled swarming of MTs on kinesin adhered surface by different physicochemical parameters of MT-kinesin and DNA. Tuning the length of DNA sequences swarming was precisely controlled with thermodynamic and kinetic feasibility. In addition, swarming was regulated using different concentration of DNA crosslinkers. Reversibility of swarming was further controlled by changing the concentration of strand displacement DNA signal allowing dissociation of swarm. The control over the swarm was accompanied by variable stiffness of MTs successfully, providing translational and circular motion. Moreover, the morphology of swarm was also found to be changed not only depending on the stiffness but also body length of MTs. Such detail study of precise control of swarming would provide new insights in developing a promising molecular swarm robotic system with desired functions.

12.
Nat Commun ; 9(1): 453, 2018 01 31.
Article in English | MEDLINE | ID: mdl-29386522

ABSTRACT

In nature, swarming behavior has evolved repeatedly among motile organisms because it confers a variety of beneficial emergent properties. These include improved information gathering, protection from predators, and resource utilization. Some organisms, e.g., locusts, switch between solitary and swarm behavior in response to external stimuli. Aspects of swarming behavior have been demonstrated for motile supramolecular systems composed of biomolecular motors and cytoskeletal filaments, where cross-linkers induce large scale organization. The capabilities of such supramolecular systems may be further extended if the swarming behavior can be programmed and controlled. Here, we demonstrate that the swarming of DNA-functionalized microtubules (MTs) propelled by surface-adhered kinesin motors can be programmed and reversibly regulated by DNA signals. Emergent swarm behavior, such as translational and circular motion, can be selected by tuning the MT stiffness. Photoresponsive DNA containing azobenzene groups enables switching between solitary and swarm behavior in response to stimulation with visible or ultraviolet light.


Subject(s)
Biophysical Phenomena , Cytoskeleton , DNA , Microtubules , Motion , Azo Compounds , Kinesins , Light , Nanostructures , Ultraviolet Rays
13.
Sci Rep ; 7(1): 6166, 2017 07 21.
Article in English | MEDLINE | ID: mdl-28733669

ABSTRACT

In vitro gliding assay of microtubules (MTs) on kinesins has provided us with valuable biophysical and chemo-mechanical insights of this biomolecular motor system. Visualization of MTs in an in vitro gliding assay has been mainly dependent on optical microscopes, limited resolution of which often render them insufficient sources of desired information. In this work, using high speed atomic force microscopy (HS-AFM), which allows imaging with higher resolution, we monitored MTs and protofilaments (PFs) of tubulins while gliding on kinesins. Moreover, under the HS-AFM, we also observed splitting of gliding MTs into single PFs at their leading ends. The split single PFs interacted with kinesins and exhibited translational motion, but with a slower velocity than the MTs. Our investigation at the molecular level, using the HS-AFM, would provide new insights to the mechanics of MTs in dynamic systems and their interaction with motor proteins.


Subject(s)
Kinesins/ultrastructure , Microscopy, Atomic Force/methods , Tubulin/ultrastructure , Microtubules/ultrastructure , Motion , Single Molecule Imaging
SELECTION OF CITATIONS
SEARCH DETAIL
...