Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Radiother Oncol ; 172: 118-125, 2022 07.
Article in English | MEDLINE | ID: mdl-35577022

ABSTRACT

BACKGROUND AND PURPOSE: Lung cancer radiotherapy increases the risk of cardiotoxicity and heart radiation dose is an independent predictor of poor survival. This study describes heart doses and strategies aiming to reduce exposure. MATERIALS AND METHODS: A systematic review of lung cancer dosimetry studies reporting heart doses published 2013-2020 was undertaken. Doses were compared according to laterality, region irradiated, treatment modality (stereotactic ablative body radiotherapy (SABR) and non-SABR), planning technique, and respiratory motion management. RESULTS: For 392 non-SABR regimens in 105 studies, the average MHD was 10.3 Gy (0.0-48.4) and was not significantly different between left and right-sided tumours. It was similar between IMRT and 3DCRT (10.9 Gy versus 10.6 Gy) and lower with particle beam therapy (proton 7.0 Gy; carbon-ion 1.9 Gy). Active respiratory motion management reduced exposure (7.4 Gy versus 9.3 Gy). For 168 SABR regimens in 35 studies, MHD was 4.0 Gy (0.0-32.4). Exposure was higher in central and lower lobe lesions (6.3 and 5.8 Gy respectively). MHD was lowest for carbon ions (0.5 Gy) compared to other techniques. Active respiratory motion management reduced exposure (2.4 Gy versus 5.0 Gy). Delineation guidelines and Dose Volume Constraints for the heart varied substantially. CONCLUSIONS: There is scope to reduce heart radiation dose in lung cancer radiotherapy. Consensus on planning objectives, contouring and DVCs for the heart may lead to reduced heart doses in the future. For IMRT, more stringent optimisation objectives may reduce heart dose. Active respiratory motion management or particle therapy may be considered in situations where cardiac dose is high.


Subject(s)
Lung Neoplasms , Radiotherapy, Intensity-Modulated , Carbon , Heart , Humans , Lung Neoplasms/radiotherapy , Radiotherapy Dosage , Radiotherapy Planning, Computer-Assisted/methods , Radiotherapy, Intensity-Modulated/adverse effects , Radiotherapy, Intensity-Modulated/methods
2.
J Radiosurg SBRT ; 7(1): 67-75, 2020.
Article in English | MEDLINE | ID: mdl-32802580

ABSTRACT

Purpose: A major factor in dose-fractionation selection for intracranial metastases in stereotactic radiosurgery (SRS) is the size of the target lesion and consequently the dose-volume to the surrounding normal brain tissue (NTV), as this has been correlated with brain radiation necrosis (RN). This study outlines the development and validation of a predictive model that can estimate the NTV for a range of dose-fractionation schemes based on target diameter from a patient's MRI. Methods: Data from a cohort of historical SRS clinical treatment plans were used to extract three key input parameters for the model - conformity index, gradient index, and a scaling factor which were then defined as a function of target volume. The relationship between the measured tumour diameter and the NTV was established by approximating the target to a spherical volume covered by the prescription dose. A scaling factor (λNTV) describes the non-linear fall-off of dose beyond the target. This was then used to provide a first-order approximation of the resulting NTV. The predictive model was retrospectively validated using linear regression against actual NTV values from 39 historical SRS plans which were independent to the derivation process. The model was validated for both three-dimensional (3D) target diameter and axial-only two-dimensional (2D) estimates of target diameter values. Results: The prediction model directly relates lesion diameter to NTV volume (cc) and thus RN risk for a given dose-fractionation. The predicted NTV (cc) for both 3D- and 2D-based volume estimates could statistically significantly predict the actual NTV (cc): R2=0.942 (p<.0005) for 3D-based estimate, and R2=0.911 (p=<.0005) for axial-only 2D-based estimate. Conclusion: This knowledge-based method for NTV prediction in intracranial SRS provides the clinician with a decision support tool to appropriately select dose-fractionation prior to treatment planning.

3.
J Med Imaging Radiat Oncol ; 64(3): 385-397, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32293114

ABSTRACT

Patients with metastatic disease are routinely serially imaged to assess disease burden and response to systemic and local therapies, which places ever-expanding demands on our healthcare resources. Image interpretation following stereotactic body radiotherapy (SBRT) for spine metastases can be challenging; however, appropriate and accurate assessment is critical to ensure patients are managed correctly and resources are optimised. Here, we take a critical review of the merits and pitfalls of various imaging modalities, current response assessment guidelines, and explore novel imaging approaches and the potential for radiomics to add value in imaging assessment.


Subject(s)
Radiosurgery/methods , Spinal Neoplasms/diagnostic imaging , Spinal Neoplasms/radiotherapy , Spinal Neoplasms/secondary , Forecasting , Humans , Radiotherapy Dosage
SELECTION OF CITATIONS
SEARCH DETAIL
...