Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Can J Kidney Health Dis ; 9: 20543581221121636, 2022.
Article in English | MEDLINE | ID: mdl-36199279

ABSTRACT

Background: Kidney disease is a major public health issue arising from loss of glomerular podocyte function, and there are considerable sex differences in its prognosis. Evidence suggests a renoprotective effect of estrogen and soy diet-derived phytoestrogens, although the molecular basis for this is poorly understood. Objective: Here, we aim to assess sex differences in expression of key proteins associated with podocyte survival and determine the effects of dietary soy on glomerular and podocyte signaling. Methods: Male and female FVB mice were fed control, low (1%), and high (20%) doses of isolated soy protein (ISP) in utero and until 100 days of age. Spot urine was collected to measure proteinuria and isolated glomeruli were used to quantify activated and total levels of nephrin, Akt, and ERK1/2. To investigate protective effects of specific soy phytoestrogens, cultured podocytes were treated with or without daidzein and subject to control or high glucose as a model of podocyte injury. Results: Nephrin and Akt were elevated at baseline in glomeruli from females compared to males. Both sexes that were fed 1% and 20% ISP displayed robust increases in total glomerular Akt compared to controls, and these effects were more prominent in females. A similar trend at both doses in both sexes was observed with activated Akt and total nephrin. Notably, males exclusively showed increased phosphorylation of nephrin and extracellular signal-regulated kinase (ERK) at the 1% ISP dose; however, no overt changes in urinary albumin excretion or podocin levels were observed, suggesting that the soy diets did not impair podocyte function. Finally, in cultured male and female podocytes, daidzein treatment suppressed high glucose-induced ERK activation. Conclusions: Together, our findings reveal a putative mechanism to explain the protective influence of sex on kidney disease progression, and they provide further evidence to support a beneficial role for dietary soy in preserving glomerular function.


Contexte: L'insuffisance rénale est un problème majeur de santé publique résultant d'une perte de fonction des podocytes glomérulaires, et son pronostic diffère selon le sexe. Bien que le fondement moléculaire en soit mal compris, des données suggèrent que les œstrogènes et des phytoestrogènes dérivés du soja alimentaire auraient un effet néphroprotecteur. Objectifs: Évaluer les différences selon le sexe dans l'expression des protéines clés associées à la survie des podocytes, et déterminer les effets du soja alimentaire sur la signalisation glomérulaire et les podocytaire. Méthodologie: Des souris FVB mâles et femelles ont reçu un régime alimentaire témoin ou un regime à faible dose (1 %) ou à dose élevée (20 %) de protéines de soja isolées (PSI) in utero et jusqu'à l'âge de 100 jours. Des échantillons aléatoires d'urine ont été recueillis pour mesurer la protéinurie et des glomérules isolés ont été utilisés pour quantifier les niveaux activés et totaux de néphrine, d'Akt et d'ERK1/2. Pour évaluer l'effet protecteur de certains phytoestrogènes du soja, des podocytes cultivés ont été traités avec ou sans daidzéine et soumis à une dose témoin ou à une dose élevée de glucose comme modèle de lésion podocytaire. Résultats: Les taux initiaux de néphrine et d'Akt étaient plus élevés dans les glomérules des souris femelles. Les souris mâles et femelles nourries avec des doses de 1 % et de 20 % de PSI ont montré des augmentations significatives de l'Akt glomérulaire totale par rapport aux témoins, et ces effets étaient plus importants chez les femelles. Une tendance semblable a été observée chez les deux sexes et pour les deux doses en ce qui concerne l'Akt activée et la néphrine totale. Seuls les mâles ont montré une augmentation de la phosphorylation de la néphrine et de l'ERK à 1 % de PSI; aucun changement manifeste n'a cependant été observé dans l'excrétion urinaire d'albumine ou dans le taux de podocine, ce qui suggère que le soja alimentaire n'a pas altéré la fonction des podocytes. Dans les podocytes cultivés, tant mâles que femelles, le traitement à la daidzéine a inhibé l'activation de l'ERK induite par une forte dose de glucose. Conclusion: Ensemble, nos résultats révèlent un mécanisme putatif pouvant expliquer l'effet protecteur du sexe du patient sur la progression de l'insuffisance rénale. Ces résultats fournissent des preuves supplémentaires soutenant l'hypothèse d'un rôle bénéfique du soja alimentaire dans la préservation de la fonction glomérulaire.

2.
J Am Soc Nephrol ; 33(8): 1546-1567, 2022 08.
Article in English | MEDLINE | ID: mdl-35906089

ABSTRACT

BACKGROUND: Maintenance of the kidney filtration barrier requires coordinated interactions between podocytes and the underlying glomerular basement membrane (GBM). GBM ligands bind podocyte integrins, which triggers actin-based signaling events critical for adhesion. Nck1/2 adaptors have emerged as essential regulators of podocyte cytoskeletal dynamics. However, the precise signaling mechanisms mediated by Nck1/2 adaptors in podocytes remain to be fully elucidated. METHODS: We generated podocytes deficient in Nck1 and Nck2 and used transcriptomic approaches to profile expression differences. Proteomic techniques identified specific binding partners for Nck1 and Nck2 in podocytes. We used cultured podocytes and mice deficient in Nck1 and/or Nck2, along with podocyte injury models, to comprehensively verify our findings. RESULTS: Compound loss of Nck1/2 altered expression of genes involved in actin binding, cell adhesion, and extracellular matrix composition. Accordingly, Nck1/2-deficient podocytes showed defects in actin organization and cell adhesion in vitro, with podocyte detachment and altered GBM morphology present in vivo. We identified distinct interactomes for Nck1 and Nck2 and uncovered a mechanism by which Nck1 and Nck2 cooperate to regulate actin bundling at focal adhesions via α actinin-4. Furthermore, loss of Nck1 or Nck2 resulted in increased matrix deposition in vivo, with more prominent defects in Nck2-deficient mice, consistent with enhanced susceptibility to podocyte injury. CONCLUSION: These findings reveal distinct, yet complementary, roles for Nck proteins in regulating podocyte adhesion, controlling GBM composition, and sustaining filtration barrier integrity.


Subject(s)
Podocytes , Actinin/metabolism , Actins/metabolism , Adaptor Proteins, Signal Transducing/metabolism , Animals , Glomerular Basement Membrane/metabolism , Mice , Oncogene Proteins/metabolism , Podocytes/metabolism , Proteomics
3.
Blood ; 140(9): 992-1008, 2022 09 01.
Article in English | MEDLINE | ID: mdl-35639948

ABSTRACT

Hematopoietic stem cell (HSC) dormancy is understood as supportive of HSC function and its long-term integrity. Although regulation of stress responses incurred as a result of HSC activation is recognized as important in maintaining stem cell function, little is understood of the preventive machinery present in human HSCs that may serve to resist their activation and promote HSC self-renewal. We demonstrate that the transcription factor PLAG1 is essential for long-term HSC function and, when overexpressed, endows a 15.6-fold enhancement in the frequency of functional HSCs in stimulatory conditions. Genome-wide measures of chromatin occupancy and PLAG1-directed gene expression changes combined with functional measures reveal that PLAG1 dampens protein synthesis, restrains cell growth and division, and enhances survival, with the primitive cell advantages it imparts being attenuated by addition of the potent translation activator, c-MYC. We find PLAG1 capitalizes on multiple regulatory factors to ensure protective diminished protein synthesis including 4EBP1 and translation-targeting miR-127 and does so independently of stress response signaling. Overall, our study identifies PLAG1 as an enforcer of human HSC dormancy and self-renewal through its highly context-specific regulation of protein biosynthesis and classifies PLAG1 among a rare set of bona fide regulators of messenger RNA translation in these cells. Our findings showcase the importance of regulated translation control underlying human HSC physiology, its dysregulation under activating demands, and the potential if its targeting for therapeutic benefit.


Subject(s)
DNA-Binding Proteins/metabolism , Hematopoietic Stem Cells , Transcription Factors , Cell Differentiation/physiology , Cell Proliferation , Cell Self Renewal , Hematopoietic Stem Cells/metabolism , Humans , Transcription Factors/metabolism
4.
Cell Stem Cell ; 27(3): 354-355, 2020 09 03.
Article in English | MEDLINE | ID: mdl-32888423

ABSTRACT

Lineage tracing and single-cell sequencing methods have been used independently to profile fate outcomes or molecular phenotypes, respectively. Weinreb et al. (2020) and Pei et al. (2020) (the latter in this issue of Cell Stem Cell) advance the shared principle that a simultaneous accounting of clonal and transcriptional trajectories provides critical new insights into organization and decision-making in hematopoiesis.


Subject(s)
Hematopoiesis , Single-Cell Analysis , Cell Differentiation , Cell Lineage
5.
J Cell Sci ; 133(4)2020 02 24.
Article in English | MEDLINE | ID: mdl-31974115

ABSTRACT

Assembly of signaling molecules into micrometer-sized clusters is driven by multivalent protein-protein interactions, such as those found within the nephrin-Nck (Nck1 or Nck2) complex. Phosphorylation on multiple tyrosine residues within the tail of the nephrin transmembrane receptor induces recruitment of the cytoplasmic adaptor protein Nck, which binds via its triple SH3 domains to various effectors, leading to actin assembly. The physiological consequences of nephrin clustering are not well understood. Here, we demonstrate that nephrin phosphorylation regulates the formation of membrane clusters in podocytes. We also reveal a connection between clustering and endocytosis, which appears to be driven by threshold levels of nephrin tyrosine phosphorylation and Nck SH3 domain signaling. Finally, we expose an in vivo correlation between transient changes in nephrin tyrosine phosphorylation, nephrin localization and integrity of the glomerular filtration barrier during podocyte injury. Altogether, our results suggest that nephrin phosphorylation determines the composition of effector proteins within clusters to dynamically regulate nephrin turnover and podocyte health.


Subject(s)
Podocytes , Tyrosine , Cluster Analysis , Endocytosis , Membrane Proteins , Oncogene Proteins/metabolism , Phosphorylation , Podocytes/metabolism , Tyrosine/metabolism
6.
Biochem Cell Biol ; 97(1): 10-20, 2019 02.
Article in English | MEDLINE | ID: mdl-29898370

ABSTRACT

Normal hematopoiesis is sustained through a carefully orchestrated balance between hematopoietic stem cell (HSC) self-renewal and differentiation. The functional importance of this axis is underscored by the severity of disease phenotypes initiated by abnormal HSC function, including myelodysplastic syndromes and hematopoietic malignancies. Major advances in the understanding of transcriptional regulation of primitive hematopoietic cells have been achieved; however, the post-transcriptional regulatory layer that may impinge on their behavior remains underexplored by comparison. Key players at this level include RNA-binding proteins (RBPs), which execute precise and highly coordinated control of gene expression through modulation of RNA properties that include its splicing, polyadenylation, localization, degradation, or translation. With the recent identification of RBPs having essential roles in regulating proliferation and cell fate decisions in other systems, there has been an increasing appreciation of the importance of post-transcriptional control at the stem cell level. Here we discuss our current understanding of RBP-driven post-transcriptional regulation in HSCs, its implications for normal, perturbed, and malignant hematopoiesis, and the most recent technological innovations aimed at RBP-RNA network characterization at the systems level. Emerging evidence highlights RBP-driven control as an underappreciated feature of primitive hematopoiesis, the greater understanding of which has important clinical implications.


Subject(s)
Gene Expression Regulation , Hematopoiesis , Hematopoietic Stem Cells/metabolism , RNA Processing, Post-Transcriptional , RNA-Binding Proteins/metabolism , Animals , Cell Differentiation , Hematopoietic Stem Cells/cytology , Humans
7.
Stem Cell Reports ; 10(4): 1384-1397, 2018 04 10.
Article in English | MEDLINE | ID: mdl-29641991

ABSTRACT

MSI2, which is expressed predominantly in hematopoietic stem and progenitor cells (HSPCs), enforces HSPC expansion when overexpressed and is upregulated in myeloid leukemias, indicating its regulated transcription is critical to balanced self-renewal and leukemia restraint. Despite this, little is understood of the factors that enforce appropriate physiological levels of MSI2 in the blood system. Here, we define a promoter region that reports on endogenous expression of MSI2 and identify USF2 and PLAG1 as transcription factors whose promoter binding drives reporter activity. We show that these factors co-regulate, and are required for, efficient transactivation of endogenous MSI2. Coincident overexpression of USF2 and PLAG1 in primitive cord blood cells enhanced MSI2 transcription and yielded cellular phenotypes, including expansion of CD34+ cells in vitro, consistent with that achieved by direct MSI2 overexpression. Global chromatin immunoprecipitation sequencing analyses confirm a preferential co-binding of PLAG1 and USF2 at the promoter of MSI2, as well as regulatory regions corresponding to genes with roles in HSPC homeostasis. PLAG1 and USF2 cooperation is thus an important contributor to stem cell-specific expression of MSI2 and HSPC-specific transcriptional circuitry.


Subject(s)
DNA-Binding Proteins/metabolism , Gene Expression Regulation , Hematopoietic Stem Cells/metabolism , RNA-Binding Proteins/genetics , Upstream Stimulatory Factors/metabolism , Base Sequence , Binding Sites , Genome, Human , Humans , K562 Cells , Promoter Regions, Genetic/genetics , Protein Binding , Transcription, Genetic , Transcriptional Activation/genetics
8.
J Biol Chem ; 292(14): 5748-5759, 2017 04 07.
Article in English | MEDLINE | ID: mdl-28213521

ABSTRACT

Proteins of the Src homology and collagen (Shc) family are typically involved in signal transduction events involving Ras/MAPK and PI3K/Akt pathways. In the nervous system, they function proximal to the neurotrophic factors that regulate cell survival, differentiation, and neuron-specific characteristics. The least characterized homolog, ShcD, is robustly expressed in the developing and mature nervous system, but its contributions to neural cell circuitry are largely uncharted. We now report that ShcD binds to active Ret, TrkA, and TrkB neurotrophic factor receptors predominantly via its phosphotyrosine-binding (PTB) domain. However, in contrast to the conventional Shc adaptors, ShcD suppresses distal phosphorylation of the Erk MAPK. Accordingly, genetic knock-out of mouse ShcD enhances Erk phosphorylation in the brain. In cultured cells, this capacity is tightly aligned to phosphorylation of ShcD CH1 region tyrosine motifs, which serve as docking platforms for signal transducers, such as Grb2. Erk suppression is relieved through independent mutagenesis of the PTB domain and the CH1 tyrosine residues, and successive substitution of these tyrosines breaks the interaction between ShcD and Grb2, thereby promoting TrkB-Grb2 association. Erk phosphorylation can also be restored in the presence of wild type ShcD through Grb2 overexpression. Conversely, mutation of the ShcD SH2 domain results in enhanced repression of Erk. Although the SH2 domain is a less common binding interface in Shc proteins, we demonstrate that it associates with the Ptpn11 (Shp2) phosphatase, which in turn regulates ShcD tyrosine phosphorylation. We therefore propose a model whereby ShcD competes with neurotrophic receptors for Grb2 binding and opposes activation of the MAPK cascade.


Subject(s)
Extracellular Signal-Regulated MAP Kinases/metabolism , MAP Kinase Signaling System/physiology , Membrane Glycoproteins/metabolism , Protein-Tyrosine Kinases/metabolism , Proto-Oncogene Proteins c-ret/metabolism , Receptor, trkA/metabolism , Shc Signaling Adaptor Proteins/metabolism , Amino Acid Motifs , Cell Line , Extracellular Signal-Regulated MAP Kinases/genetics , GRB2 Adaptor Protein/genetics , GRB2 Adaptor Protein/metabolism , Humans , Membrane Glycoproteins/genetics , Phosphorylation/physiology , Protein Tyrosine Phosphatase, Non-Receptor Type 11/genetics , Protein Tyrosine Phosphatase, Non-Receptor Type 11/metabolism , Protein-Tyrosine Kinases/genetics , Proto-Oncogene Proteins c-ret/genetics , Receptor, trkA/genetics , Receptor, trkB , Shc Signaling Adaptor Proteins/genetics
9.
J Biol Chem ; 291(24): 12799-12808, 2016 Jun 10.
Article in English | MEDLINE | ID: mdl-27033705

ABSTRACT

Podocytes are key components of the kidney blood filtration barrier, and their ability to withstand hemodynamic strain is proposed to be closely tied to their unique and flexible cytoarchitecture. However, the mechanisms that control such mechanotransduction are poorly understood. We have previously established that tyrosine phosphorylation of the transmembrane protein nephrin promotes recruitment of the Nck1/2 cytoskeletal adaptor proteins and downstream actin remodeling. We now reveal that Nck integrates nephrin with the Hippo kinase cascade through association with the adaptor protein WTIP. Using mutational analysis, we show that Nck sequesters WTIP and its binding partner Lats1 to phosphorylated nephrin, resulting in decreased phospho-activation of Lats1. We further demonstrate that, coincident with nephrin dephosphorylation in a transient model of podocyte injury in mice, Lats1 is rapidly activated, and this precedes significant down-regulation of the transcription regulator Yap. Moreover, we show reduced levels of Yap protein in mice with chronic disruption of nephrin phospho-signaling. Together, these findings support the existence of a dynamic molecular link between nephrin signaling and the canonical Hippo pathway in podocytes, which may facilitate the conversion of mechanical cues to biochemical signals promoting podocyte viability.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Carrier Proteins/metabolism , Membrane Proteins/metabolism , Oncogene Proteins/metabolism , Protein Interaction Maps , Protein Serine-Threonine Kinases/metabolism , Signal Transduction , Animals , Co-Repressor Proteins , Cytoskeletal Proteins , Female , Gene Knock-In Techniques , HEK293 Cells , Hippo Signaling Pathway , Humans , Male , Mechanotransduction, Cellular , Mice, Inbred C57BL , Phosphorylation , Podocytes/metabolism
10.
J Am Soc Nephrol ; 27(8): 2422-35, 2016 08.
Article in English | MEDLINE | ID: mdl-26802179

ABSTRACT

Podocytes are specialized epithelial cells of the kidney blood filtration barrier that contribute to permselectivity via a series of interdigitating actin-rich foot processes. Positioned between adjacent projections is a unique cell junction known as the slit diaphragm, which is physically connected to the actin cytoskeleton via the transmembrane protein nephrin. Evidence indicates that tyrosine phosphorylation of the intracellular tail of nephrin initiates signaling events, including recruitment of cytoplasmic adaptor proteins Nck1 and Nck2 that regulate actin cytoskeletal dynamics. Nephrin tyrosine phosphorylation is altered in human and experimental renal diseases characterized by pathologic foot process remodeling, prompting the hypothesis that phosphonephrin signaling directly influences podocyte morphology. To explore this possibility, we generated and analyzed knockin mice with mutations that disrupt nephrin tyrosine phosphorylation and Nck1/2 binding (nephrin(Y3F/Y3F) mice). Homozygous nephrin(Y3F/Y3F) mice developed progressive proteinuria accompanied by structural changes in the filtration barrier, including podocyte foot process effacement, irregular thickening of the glomerular basement membrane, and dilated capillary loops, with a similar but later onset phenotype in heterozygous animals. Furthermore, compared with wild-type mice, nephrin(Y3F/Y3F) mice displayed delayed recovery in podocyte injury models. Profiling of nephrin tyrosine phosphorylation dynamics in wild-type mice subjected to podocyte injury indicated site-specific differences in phosphorylation at baseline, injury, and recovery, which correlated with loss of nephrin-Nck1/2 association during foot process effacement. Our results define an essential requirement for nephrin tyrosine phosphorylation in stabilizing podocyte morphology and suggest a model in which dynamic changes in phosphotyrosine-based signaling confer plasticity to the podocyte actin cytoskeleton.


Subject(s)
Podocytes/physiology , Podocytes/ultrastructure , Tyrosine/metabolism , Animals , Female , Male , Membrane Proteins , Mice , Mice, Inbred C57BL , Phosphorylation , Signal Transduction
11.
J Biol Chem ; 288(3): 1500-10, 2013 Jan 18.
Article in English | MEDLINE | ID: mdl-23188823

ABSTRACT

The transmembrane protein nephrin is a key component of the kidney slit diaphragm that contributes to the morphology of podocyte foot processes through signaling to the underlying actin cytoskeleton. We have recently reported that tyrosine phosphorylation of the cytoplasmic tail of nephrin facilitates recruitment of Nck SH2/SH3 adaptor proteins and subsequent actin remodeling and that phosphorylation of the Nck binding sites on nephrin is decreased during podocyte injury. We now demonstrate that Nck directly modulates nephrin phosphorylation through formation of a signaling complex with the Src family kinase Fyn. The ability of Nck to enhance nephrin phosphorylation is compromised in the presence of a Src family kinase inhibitor and when the SH3 domains of Nck are mutated. Furthermore, induced loss of Nck expression in podocytes in vivo is associated with a rapid reduction in nephrin tyrosine phosphorylation. Our results suggest that Nck may facilitate dynamic signaling events at the slit diaphragm by promoting Fyn-dependent phosphorylation of nephrin, which may be important in the regulation of foot process morphology and response to podocyte injury.


Subject(s)
Adaptor Proteins, Signal Transducing/genetics , Membrane Proteins/genetics , Muscle Proteins/genetics , Oncogene Proteins/genetics , Podocytes/metabolism , Tyrosine/metabolism , Actins/genetics , Actins/metabolism , Adaptor Proteins, Signal Transducing/metabolism , Animals , Gene Expression Regulation , HEK293 Cells , Humans , Membrane Proteins/metabolism , Mice , Mice, Knockout , Muscle Proteins/metabolism , Oncogene Proteins/metabolism , Phosphorylation , Podocytes/cytology , Protein Binding , Proto-Oncogene Proteins c-fyn/genetics , Proto-Oncogene Proteins c-fyn/metabolism , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL
...