Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nav Res Logist ; 71(1): 41-63, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38406181

ABSTRACT

COVID-19 outbreaks in local communities can result in a drastic surge in demand for scarce resources such as mechanical ventilators. To deal with such demand surges, many hospitals (1) purchased large quantities of mechanical ventilators, and (2) canceled/postponed elective procedures to preserve care capacity for COVID-19 patients. These measures resulted in a substantial financial burden to the hospitals and poor outcomes for non-COVID-19 patients. Given that COVID-19 transmits at different rates across various regions, there is an opportunity to share portable healthcare resources to mitigate capacity shortages triggered by local outbreaks with fewer total resources. This paper develops a novel data-driven adaptive robust simulation-based optimization (DARSO) methodology for optimal allocation and relocation of mechanical ventilators over different states and regions. Our main methodological contributions lie in a new policy-guided approach and an efficient algorithmic framework that mitigates critical limitations of current robust and stochastic models and make resource-sharing decisions implementable in real-time. In collaboration with epidemiologists and infectious disease doctors, we give proof of concept for the DARSO methodology through a case study of sharing ventilators among regions in Ohio and Michigan. The results suggest that our optimal policy could satisfy ventilator demand during the first pandemic's peak in Ohio and Michigan with 14% (limited sharing) to 63% (full sharing) fewer ventilators compared to a no sharing strategy (status quo), thereby allowing hospitals to preserve more elective procedures. Furthermore, we demonstrate that sharing unused ventilators (rather than purchasing new machines) can result in 5% (limited sharing) to 44% (full sharing) lower expenditure, compared to no sharing, considering the transshipment and new ventilator costs.

2.
Eur J Oper Res ; 304(1): 192-206, 2023 Jan 01.
Article in English | MEDLINE | ID: mdl-35068665

ABSTRACT

We study resource planning strategies, including the integrated healthcare resources' allocation and sharing as well as patients' transfer, to improve the response of health systems to massive increases in demand during epidemics and pandemics. Our study considers various types of patients and resources to provide access to patient care with minimum capacity extension. Adding new resources takes time that most patients don't have during pandemics. The number of patients requiring scarce healthcare resources is uncertain and dependent on the speed of the pandemic's transmission through a region. We develop a multi-stage stochastic program to optimize various strategies for planning limited and necessary healthcare resources. We simulate uncertain parameters by deploying an agent-based continuous-time stochastic model, and then capture the uncertainty by a forward scenario tree construction approach. Finally, we propose a data-driven rolling horizon procedure to facilitate decision-making in real-time, which mitigates some critical limitations of stochastic programming approaches and makes the resulting strategies implementable in practice. We use two different case studies related to COVID-19 to examine our optimization and simulation tools by extensive computational results. The results highlight these strategies can significantly improve patient access to care during pandemics; their significance will vary under different situations. Our methodology is not limited to the presented setting and can be employed in other service industries where urgent access matters.

SELECTION OF CITATIONS
SEARCH DETAIL
...