Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Vaccines (Basel) ; 12(3)2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38543907

ABSTRACT

Bacterial lipopolysaccharides (LPSs) have been shown to promote enteric viral infections. This study tested the hypothesis that elevated levels of bacterial LPS improve oral rotavirus vaccine replication in South African infants. Stool samples were collected from infants a week after rotavirus vaccination to identify vaccine virus shedders (n = 43) and non-shedders (n = 35). Quantitative real-time PCR was used to assay for selected LPS-rich bacteria, including Serratia marcescens, Pseudomonas aeruguinosa and Klebsiella pneumonia, and to measure the gene expression of bacterial LPS, host Toll-like Receptor 4 (TLR4) and Interleukin-8 (IL-8). The abundance of selected LPS-rich bacteria was significantly higher in vaccine shedders (median log 4.89 CFU/g, IQR 2.84) compared to non-shedders (median log 3.13 CFU/g, IQR 2.74), p = 0.006. The TLR4 and IL-8 gene expressions were increased four- and two-fold, respectively, in vaccine shedders versus non-shedders, but no difference was observed in the bacterial LPS expression, p = 0.09. A regression analysis indicated a significant association between the abundance of selected LPS-rich bacteria and vaccine virus shedding (Odds ratio 1.5, 95% CI = 1.10-1.89), p = 0.002. The findings suggest that harbouring higher counts of LPS-rich bacteria can increase the oral rotavirus vaccine take in infants.

2.
Vaccine ; 38(52): 8260-8263, 2020 12 14.
Article in English | MEDLINE | ID: mdl-33213928

ABSTRACT

Histo-blood group antigens are recognized by rotaviruses in a P- genotype dependent manner and their frequency in a population can influence fecal virus shedding. This study investigated the rate of fecal shedding of Rotarix vaccine and its association with HBGA phenotype distribution in South Africa. Stool and saliva specimens were collected from 150 infants attending immunization on the day of both first and second doses and 7 days later. Virus shedding was detected by real-time qPCR while HBGA phenotypes in saliva were determined by enzyme linked immunosorbent assay. Vaccine virus shedding was higher (23.6%) after the first dose than the second dose (4.7%). About 77% of virus-shedding infants were secretors (OR = 129; 95% CI, 6.088 - 2733), compared with none of non-virus shedding infants. Non-secretor status was significantly associated with low vaccine virus shedding while the likelihood of shedding was significantly higher in secretors.


Subject(s)
Blood Group Antigens , Rotavirus Infections , Rotavirus Vaccines , Rotavirus , Feces , Humans , Infant , Phenotype , Rotavirus/genetics , Rotavirus Infections/prevention & control , South Africa , Virus Shedding
SELECTION OF CITATIONS
SEARCH DETAIL
...