Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Acta Crystallogr B Struct Sci Cryst Eng Mater ; 75(Pt 3): 354-360, 2019 Jun 01.
Article in English | MEDLINE | ID: mdl-32830657

ABSTRACT

Very recently, experimentally synthesized R{\bar 3}c phase LaCuO3 was studied by Zhang, Jiao, Kou, Liao & Du [J. Mater. Chem. C (2018), 6, 6132-6137], and they found that this material exhibits multiple Dirac cones in its non-spin-polarized electronic structure. Motivated by this study, the focus here is on a new R{\bar 3}c phase material, AgCuF3, which has a combination of multiple Dirac cones and 100% spin polarization properties. Compared to the non-spin-polarized system LaCuO3, the spin-polarized Dirac behavior in AgCuF3 is intrinsic. The effects of on-site Coulomb interaction, uniform strain and spin-orbit coupling were added to examine the stability of its multiple Dirac cones and half-metallic behavior. Moreover, the thermodynamic properties under different temperatures and pressures were investigated, including the normalized volume, thermal volume expansion coefficient, heat capacity at constant volume and Debye temperature. The thermal stability and the phase stability of this material were also studied via ab initio molecular dynamic simulations and the formation energy of the material, respectively.

2.
Sci Rep ; 7(1): 16183, 2017 11 23.
Article in English | MEDLINE | ID: mdl-29170544

ABSTRACT

In this paper, we have investigated the structural, electronic, magnetic, half-metallic, mechanical, and thermodynamic properties of the equiatomic quaternary Heusler (EQH) compound FeCrRuSi using the density functional theory (DFT) and the quasi-harmonic Debye model. Our results reveal that FeCrRuSi is a half-metallic material (HMM) with a total magnetic moment of 2.0 µB in agreement with the well-known Slater-Pauling rule Mt = Zt - 24. Furthermore, the origin of the half-metallic band gap in FeCrRuSi is well studied through a schematic diagram of the possible d-d hybridization between Fe, Cr and Ru elements. The half-metallic behavior of FeCrRuSi can be maintained in a relatively wide range of variations of the lattice constant (5.5-5.8 Å) under uniform strain and the c/a ratio (0.96-1.05) under tetragonal distortion. The calculated phonon dispersion, cohesive and formation energies, and mechanical properties reveal that FeCrRuSi is stable with an EQH structure. Importantly, the compound of interest has been prepared and is found to exist in an EQH type structure with the presence of some B2 disorder. Moreover, the thermodynamic properties, such as the thermal expansion coefficient α, the heat capacity CV, the Grüneisen constant γ, and the Debye temperature ΘD are calculated.

SELECTION OF CITATIONS
SEARCH DETAIL
...