Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Ann Bot ; 112(7): 1293-302, 2013 Nov.
Article in English | MEDLINE | ID: mdl-24013386

ABSTRACT

BACKGROUND AND AIMS: The olive (Olea europaea subsp. europaea) was domesticated in the Mediterranean area but its wild relatives are distributed over three continents, from the Mediterranean basin to South Africa and south-western Asia. Recent studies suggested that this crop originated in the Levant while a secondary diversification occurred in most westward areas. A possible contribution of the Saharan subspecies (subsp. laperrinei) has been highlighted, but the data available were too limited to draw definite conclusions. Here, patterns of genetic differentiation in the Mediterranean and Saharan olives are analysed to test for recent admixture between these taxa. METHODS: Nuclear microsatellite and plastid DNA (ptDNA) data were compiled from previous studies and completed for a sample of 470 cultivars, 390 wild Mediterranean trees and 270 Saharan olives. A network was reconstructed for the ptDNA haplotypes, while a Bayesian clustering method was applied to identify the main gene pools in the data set and then simulate and test for early generations of admixture between Mediterranean and Saharan olives. KEY RESULTS: Four lineages of ptDNA haplotypes are recognized: three from the Mediterranean basin and one from the Sahara. Only one haplotype, primarily distributed in the Sahara, is shared between laperrinei and europaea. This haplotype is detected once in 'Dhokar', a cultivar from the Maghreb. Nuclear microsatellites show geographic patterns of genetic differentiation in the Mediterranean olive that reflect the primary origins of cultivars in the Levant, and indicate a high genetic differentiation between europaea and laperrinei. No first-generation hybrid between europaea and laperrinei is detected, but recent, reciprocal admixture between Mediterranean and Saharan subspecies is found in a few accessions, including 'Dhokar'. CONCLUSIONS: This study reports for the first time admixture between Mediterranean and Saharan olives. Although its contribution remains limited, Laperrine's olive has been involved in the diversification of cultivated olives.


Subject(s)
Gene Pool , Geography , Olea/genetics , Africa, Northern , Alleles , Bayes Theorem , Cell Nucleus/genetics , DNA, Chloroplast/genetics , Genetic Variation , Genetics, Population , Haplotypes/genetics , Mediterranean Region , Microsatellite Repeats/genetics , Models, Genetic , Multigene Family/genetics
2.
Proc Biol Sci ; 280(1756): 20122833, 2013 Apr 07.
Article in English | MEDLINE | ID: mdl-23390107

ABSTRACT

The location and timing of domestication of the olive tree, a key crop in Early Mediterranean societies, remain hotly debated. Here, we unravel the history of wild olives (oleasters), and then infer the primary origins of the domesticated olive. Phylogeography and Bayesian molecular dating analyses based on plastid genome profiling of 1263 oleasters and 534 cultivated genotypes reveal three main lineages of pre-Quaternary origin. Regional hotspots of plastid diversity, species distribution modelling and macrofossils support the existence of three long-term refugia; namely the Near East (including Cyprus), the Aegean area and the Strait of Gibraltar. These ancestral wild gene pools have provided the essential foundations for cultivated olive breeding. Comparison of the geographical pattern of plastid diversity between wild and cultivated olives indicates the cradle of first domestication in the northern Levant followed by dispersals across the Mediterranean basin in parallel with the expansion of civilizations and human exchanges in this part of the world.


Subject(s)
Genetic Variation , Olea/physiology , Agriculture , Bayes Theorem , Cyprus , Haplotypes , Mediterranean Region , Middle East , Olea/genetics , Phylogeography , Plastids/genetics
3.
Theor Appl Genet ; 106(3): 521-9, 2003 Feb.
Article in English | MEDLINE | ID: mdl-12589553

ABSTRACT

With more than 100 accessions, the CBNMP olive collection includes a major part of the French germplasm. We used molecular markers to characterise all accessions and to study genetic relationships between cultivars. Firstly, 497 olive trees were genotyped using 32 RAPD markers. We identified 114 RAPD profiles and detected several cases of mislabelling, synonymy and homonymy. Secondly, for each RAPD profile, one tree was analysed using mtDNA RFLPs to determine the cytoplasmic lineage of each cultivar and using five nuclear SSR loci. French germplasm displayed ME1, MOM and MCK mitotypes with ME1 prevailing (84%). Based on SSR markers, we revealed a slight differentiation between French cultivars growing in the West and the East side of the Rhône Valley. This study allowed us to construct a molecular data-base for the reference collection and to analyse genetic diversity for further prospecting, and for introducing new olive accessions.


Subject(s)
DNA, Mitochondrial/analysis , DNA, Plant/analysis , Genetic Markers , Olea/genetics , Polymorphism, Genetic , Trees/genetics , DNA Fingerprinting , Ecology , Genetic Variation , Genotype , Microsatellite Repeats , Olea/growth & development , Phylogeny , Random Amplified Polymorphic DNA Technique , Repetitive Sequences, Nucleic Acid , Trees/classification
4.
Theor Appl Genet ; 105(2-3): 298-305, 2002 Aug.
Article in English | MEDLINE | ID: mdl-12582532

ABSTRACT

The genetic diversity of apricot ( Prunus armeniaca; 2n = 16) was studied using AFLP markers. Forty seven apricot cultivars were selected from the following geographic regions: Europe, North America, North Africa, Turkey, Iran and China. Five EcoRI- MseI AFLP primer combinations revealed 416 legible bands, of which 379 were polymorphic markers. A similarity matrix was prepared using the simple matching coefficient of similarity. A UPGMA dendrogram demonstrated a gradient of decreasing genetic diversity of varieties from the former USSR to Southern Europe. This is coherent with the historical dissemination of apricot from its center of origin in Asia. The American cultivars were intermediate demonstrating a different genetic base than the European and/or Mediterranean cultivars. Euclidean distances from the first ten Factorial Component Analysis coordinate axes were used to generate a tree using the Ward algorithm. The results of these analyses were evaluated based on the known geographic origins and agronomic characteristics of the cultivars studied. Four cultivar groups were identified: Diversification, Geographically Adaptable, Continental Europe and Mediterranean Basin. To evaluate the relationship of the common apricot with some closely related species, one or two accessions of the following related species or sub-species from within the section Armeniaca were included in the analysis: Prunus armeniaca var. ansu, Prunus mume, Prunus brigantiaca, Prunus dasycarpa, and Prunus holosericea. A Neighbour Joining dendrogram was made using the similarity matrix. The P. holosericea accession fell well within the cultivar group, thus supporting its classification as a variant of P. armeniaca. The P. armeniaca var. ansu accession was sister to the common apricot cluster with a bootstrap value of 96%. P. mume was farther removed. P. brigantiaca was the most-distant from the common apricots. P. dasycarpa was intermediate between P. brigantiaca and P. mume, in accord with its plum-apricot hybrid origin. The results have a direct application for the selection of new breeding progenitors.

5.
Theor Appl Genet ; 105(1): 139-144, 2002 Jul.
Article in English | MEDLINE | ID: mdl-12582571

ABSTRACT

Four hundred and four individuals belonging to the species Olea europaea were characterised using mitochondrial DNA (mtDNA) RFLPs. Twelve mitotypes were distinguished. The combination of mtDNA information with cpDNA polymorphism (characterised in a previous study) led us to recognise 20 cytoplasmic lineages of which seven were found in the Mediterranean area (oleasters, cultivars and O. e. subsp. maroccana). In the olive complex, strong cytoplasm genetic differentiation was revealed ( F(st) = 0.73). Very strong linkage disequilibrium between cpDNA and mtDNA polymorphisms was observed, particularly in the Mediterranean subspecies europaea. This high congruence between genetic structure based on cpDNA or mtDNA sustains a low level of recurrent mutation in both organelle DNAs and, thus, the polymorphisms used in this study were pertinent to reconstruct olive phylogeography. In the Mediterranean area, genetic drift due to population regression during Quaternary glaciations, and founder effects associated with the postglacial seed dissemination, have probably contributed to the existence of a high genetic linkage disequilibrium between cpDNA and mtDNA polymorphisms. Thus, four Mediterranean cytoplasmic lineages, clearly distinguished both by cpDNA and mtDNA polymorphisms, most likely reflect four distinct relic populations during Quaternary glaciations. Finally, O. e. subsp. maroccana from South Morocco, which also displayed specific cytoplasmic lineages, should be considered as another relic Mediterranean population.

6.
Theor Appl Genet ; 104(8): 1353-1361, 2002 Jun.
Article in English | MEDLINE | ID: mdl-12582591

ABSTRACT

Chloroplast DNA diversity in the olive ( Olea europaea L.) complex was studied using PCR-RFLP and microsatellite markers. Fifteen chlorotypes were distinguished. We constructed a cpDNA phylogenetic tree in which five clades were recognised and located in distinct geographic areas: clade A in Central and Southern Africa, clade C in Asia, clade M in North-West Africa, clade E1 in the Mediterranean Basin and Sahara, and clade E2 in West Mediterranea. Cultivated olive clustered with Mediterranean and Saharan wild forms (clades E1 and E2). Strong genetic differentiation for cpDNA markers was observed between eastern and western Mediterranean olives, suggesting that these areas have represented different glacial refugia. Humans most likely spread one eastern chlorotype, preponderant in cultivars, across the western Mediterranean Basin. Its presence in O. e. subsp. laperrinei from the Sahara suggests a possible Mediterranean olive origin in an African population, which may have overlapped in the Southern Mediterranean during the Quaternary.

SELECTION OF CITATIONS
SEARCH DETAIL
...