Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Dairy Sci ; 107(4): 1993-2010, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37709014

ABSTRACT

This study evaluated the effects of replacing cereal grains and soybean meal with by-products (BY) on production performance, nutrient digestibility, ruminal fermentation, nutrient recovery, and eating and chewing behavior of moderate-producing dairy cows under heat-stress conditions. Twelve multiparous Holstein cows (116.7 ± 12.01 d in milk; 42.7 ± 5.06 kg/d milk yield; 665 ± 77 kg body weight; mean ± SD) were used in a replicated 3 × 3 Latin square with 28-d periods (21 d for diet adaptation and 7 d for sampling and data collection). Cows were fed a total mixed ration containing a 39.2:60.8 ratio of forage to concentrate throughout the experiment. All diets were formulated to be isoenergetic and isonitrogenous, with different concentrates. Diets were (1) control diet based on cereal grains (CON: ground corn and ground barley, plus soybean meal); (2) sugar-rich BY diet (S-BY-CM: beet pulp, citrus pulp, and liquid molasses, plus canola meal); and (3) cereal grain BY diet (CG-BY: rice bran, corn germ meal, wheat bran, barley sprout, and broken corn). Our results showed that replacing grains with BY increased neutral detergent fiber intake and digestibility but decreased starch intake, human-edible energy, and human-edible protein. Milk yield and dry matter intake (DMI) decreased more in cows fed the CG-BY diet compared with the other 2 treatments. In contrast, no significant differences were observed between the CON and S-BY-CM diets in terms of milk yield and DMI. The S-BY-CM diet increased energy-corrected milk production compared with the CG-BY diet (36.2 vs. 34.3 kg/d), but CG-BY enhanced feed conversion efficiency compared with the other 2 treatments. Although the S-BY-CM diet prolonged the eating and sorting of small particles, neither of the dietary treatments affected chewing activity or ruminal pH 4 h after feeding. Furthermore, both diets containing BY contributed to an increase in milk fat content in comparison to the CON group. Additionally, the CG-BY and S-BY-CM diets demonstrated better performance than the CON diet in terms of human-edible feed conversion efficiency for protein and energy. The results indicated that S-BY-CM can completely replace barley and corn grain in the diet of mid-lactating dairy cows exposed to heat-stress conditions without any negative effect on production and ruminal pH. However, the inclusion of CG-BY did impair DMI, milk yield, and digestibility of nutrients and is not recommended during heat-stress conditions.


Subject(s)
Hordeum , Lactation , Female , Humans , Cattle , Animals , Silage/analysis , Hordeum/metabolism , Edible Grain , Hot Temperature , Diet/veterinary , Milk/chemistry , Zea mays/metabolism , Rumen/metabolism , Digestion
2.
Sci Rep ; 12(1): 11942, 2022 07 13.
Article in English | MEDLINE | ID: mdl-35831399

ABSTRACT

The present study investigated the effects of adding wheat straw treated with exogenous fibrolytic enzymes (EFE) and a probiotic supplement to finely ground starters on growth performance, rumen fermentation, behavior, digestibility, and health of dairy calves. A total of 48 Holstein dairy calves (39.8 ± 1.67 kg body weight) were randomly assigned to one of 4 nutritional treatments (n = 12 calves per treatment). The experiment was conducted in a 2 × 2 factorial arrangement of treatments consisting of two diets with or without EFE-treated wheat straw (2 g/day/calf) and diets with or without probiotics (2 g/day/calf). All calves were weaned on day 63 and remained in the study until day 84. The addition of EFE to wheat straw had no effect on starter feed intake, increased neutral detergent fiber (NDF) digestibility and recumbency, but decreased average daily gain (ADG) after weaning (240 g/d). The addition of probiotics to the diet had no effect on starter feed intake, improved feed efficiency, ADG (150 g/d), final weight (11.3 kg), and NDF digestibility, and decreased the ratio of acetate to propionate in the rumen. The addition of probiotics to starter feed for calves could improve their growth.


Subject(s)
Animal Feed , Probiotics , Animals , Cattle , Animal Feed/analysis , Body Weight , Diet/veterinary , Dietary Fiber/metabolism , Dietary Fiber/pharmacology , Fermentation , Probiotics/pharmacology , Rumen/metabolism , Triticum , Weaning
SELECTION OF CITATIONS
SEARCH DETAIL
...