Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Langmuir ; 36(19): 5156-5164, 2020 May 19.
Article in English | MEDLINE | ID: mdl-32326706

ABSTRACT

In this work, we study the charge formation and the characteristics of the electrical double layer in a nonpolar medium using electrical impedance spectroscopy. To stabilize the free ionic species, a nonionic surfactant is added to the system. The conductivity and permittivity of the medium are obtained from high- to medium-frequency impedance data. Based on the correlation between (viscosity-adjusted) conductivity and surfactant concentration, we conclude that charge formation occurs due to a disproportionation mechanism. We accordingly estimate the concentration of the charge carriers in the sample and the Debye length of the diffuse double layer. The capacitance of the electrical double layer can be extracted from the low-frequency impedance data. We use this data to calculate the electrode distance of an equivalent parallel-plate capacitor. It is found that this distance is on the order of magnitude of Angstroms, indicating that the measured electrical double-layer capacitance is in fact the Stern layer capacitance.

2.
Langmuir ; 36(16): 4250-4260, 2020 Apr 28.
Article in English | MEDLINE | ID: mdl-32227968

ABSTRACT

The structure of the electrical double layer at the interface of planar electrodes and aqueous solutions is investigated. Electrical impedance spectroscopy is used to measure the impedance of aqueous solutions of sodium chloride and two different surfactants over a wide range of concentrations. The electrode capacitance is directly inferred from the admittance spectra as well as by regression of the impedance spectra to an equivalent circuit. It is found that the electrode capacitance remains on the same order of magnitude over the entire range of investigated concentrations. This is contradictive to the predictions of the Gouy-Chapman-Stern theory which predicts that, at low concentrations, the electrode capacitance should be determined by the diffuse layer. It is concluded that the Stern layer capacitance always dominates the electrode capacitance, even at very low concentrations, and the establishment of a diffuse layer capacitance requires an ionic strength of around 1 mM.

3.
Electrophoresis ; 40(5): 710-719, 2019 03.
Article in English | MEDLINE | ID: mdl-30229959

ABSTRACT

The complex permittivities of aqueous SDS solutions, with and without the addition of sodium chloride (NaCl), are measured in the frequency range from 200 MHz to 14 GHz. The SDS concentrations are chosen such that the SDS molecules aggregate to micelles. In this frequency range, the measured spectra allow for the identification of two different relaxation processes. That is, the relaxation of the water molecules at frequencies above 1 GHz and the micellar relaxation at frequencies lower than 1 GHz. It is found that the addition of NaCl to the system mostly affects the micellar relaxation process. In detail, the time constant as well as the amplitude of the relaxation decrease by adding NaCl. These effects are attributed to the change in the solution conductivity that changes the properties of the micelle's electrical double layer. We also extract the Dukhin number of the micelles as a function of surfactant and electrolyte content from the measurements. The Dukhin number is a dimensionless group that describes the influence of the surface conductivity on a phenomena. A regression between Dukhin numbers and free sodium ions is found so that all data collapses on a single curve independent of the surfactant concentration. The surface conductivity is a manifestation of the electrical double layer and we use the Bikerman equation to infer the zeta potential of the micelles. Comparison to literature data shows very good agreement and proves that dielectric relaxation spectroscopy can be engaged to infer the zeta potential of micelles. Abbreviations: CMC critical micelle concentration, DRS dielectric relaxation spectroscopy, EDL electrical double layer.


Subject(s)
Dielectric Spectroscopy/methods , Micelles , Models, Chemical , Sodium Chloride/chemistry , Sodium Dodecyl Sulfate/chemistry , Surface-Active Agents/chemistry
4.
Langmuir ; 33(40): 10473-10482, 2017 10 10.
Article in English | MEDLINE | ID: mdl-28915350

ABSTRACT

The addition of surfactants can considerably impact the electrical characteristics of an interface, and the zeta potential measurement is the standard method for its characterization. In this article, a comprehensive study of the zeta potential of poly(methyl methacrylate) (PMMA) in contact with aqueous solutions containing an anionic, a cationic, or a zwitterionic surfactant at different pH and ionic strength values is conducted. Electrophoretic mobilities are inferred from electrophoretic light scattering measurements of the particulate PMMA. These values can be converted into zeta potentials using permittivity and viscosity measurements of the continuous phase. Different behaviors are observed for each surfactant type, which can be explained with the various adsorption mechanisms on PMMA. For the anionic surfactant, the absolute zeta potential value below the critical micelle concentration (CMC) increases with the concentration, while it becomes rather constant around the CMC. At concentrations above the CMC, the absolute zeta potential increases again. We propose that hydrophobic-based adsorption and, at higher concentrations, the competing micellization process drive this behavior. The addition of cationic surfactant results in an isoelectric point below the CMC where the negative surface charge is neutralized by a layer of adsorbed cationic surfactant. At concentrations near the CMC, the positive zeta potential is rather constant. In this case, we propose that electrostatic interactions combined with hydrophobic adsorption are responsible for the observed behavior. The zeta potential in the presence of zwitterionic surfactant is influenced by the adsorption, because of hydrophobic interactions between the surfactant tail and the PMMA surface. However, there is less influence, compared to the ionic surfactants. For all three surfactant types, the zeta potential changes to more-negative or less-positive values for alkaline pH values, because of hydroxide adsorption. An increase of the ionic strength decreases the absolute value of the zeta potential, because of the shielding effects.

SELECTION OF CITATIONS
SEARCH DETAIL
...