Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Biosens Bioelectron ; 214: 114481, 2022 Oct 15.
Article in English | MEDLINE | ID: mdl-35779408

ABSTRACT

Label-free biosensing, such as with surface plasmon resonance (SPR), is a highly efficient method for monitoring the responses of living cells exposed to pharmacological agents and biochemical stimuli in vitro. Conventional cell culture protocols used in cell-based biosensing generally provide little direct control over cell morphologies and phenotypes. Surface micropatterning techniques have been exploited for the controlled immobilization and establishment of well-defined cell morphologies and phenotypes. In this article, surface adhesion micropatterns are used to control the adhesion of endothelial cells within adjacent hexagonal microstructures to promote the emergence of a well-controlled and standardized cell layer phenotype onto SPR sensor surfaces. We show that the formation of cell-cell junctions can be controlled by tuning the inter-cellular spacing in groups of 3 neighbouring cells. Fluorescence microscopy was used to confirm the formation of vascular endothelium cadherin junctions, a structural marker of a functional endothelium. In order to confirm the functionality of the proposed model, the response to thrombin, a modulator of endothelium integrity, was monitored by surface plasmon resonance imaging (SPRI). Experiments demonstrate the potential of the proposed model as a primary biological signal transducer for SPRI-based analysis, with potential applications in cell biology, pharmacology and diagnostic.


Subject(s)
Biosensing Techniques , Biosensing Techniques/methods , Endothelial Cells , Endothelium , Surface Plasmon Resonance/methods , Thrombin
2.
PLoS Comput Biol ; 15(2): e1006771, 2019 02.
Article in English | MEDLINE | ID: mdl-30742612

ABSTRACT

Plant tissue architecture and organ morphogenesis rely on the proper orientation of cell divisions. Previous attempts to predict division planes from cell geometry in plants mostly focused on 2D symmetric divisions. Using the stereotyped division patterns of Arabidopsis thaliana early embryogenesis, we investigated geometrical principles underlying plane selection in symmetric and in asymmetric divisions within complex 3D cell shapes. Introducing a 3D computational model of cell division, we show that area minimization constrained on passing through the cell centroid predicts observed divisions. Our results suggest that the positioning of division planes ensues from cell geometry and gives rise to spatially organized cell types with stereotyped shapes, thus underlining the role of self-organization in the developing architecture of the embryo. Our data further suggested the rule could be interpreted as surface minimization constrained by the nucleus position, which was validated using live imaging of cell divisions in the stomatal cell lineage.


Subject(s)
Arabidopsis/embryology , Cell Division/physiology , Cell Shape/physiology , Arabidopsis/metabolism , Arabidopsis Proteins/metabolism , Cell Lineage , Cell Nucleus/metabolism , Computer Simulation , Models, Statistical
SELECTION OF CITATIONS
SEARCH DETAIL
...