Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
J Biol Chem ; 296: 100492, 2021.
Article in English | MEDLINE | ID: mdl-33662397

ABSTRACT

Thiol dioxygenases are a subset of nonheme iron oxygenases that catalyze the formation of sulfinic acids from sulfhydryl-containing substrates and dioxygen. Among this class, cysteine dioxygenases (CDOs) and 3-mercaptopropionic acid dioxygenases (3MDOs) are the best characterized, and the mode of substrate binding for CDOs is well understood. However, the manner in which 3-mercaptopropionic acid (3MPA) coordinates to the nonheme iron site in 3MDO remains a matter of debate. A model for bidentate 3MPA coordination at the 3MDO Fe-site has been proposed on the basis of computational docking, whereas steady-state kinetics and EPR spectroscopic measurements suggest a thiolate-only coordination of the substrate. To address this gap in knowledge, we determined the structure of Azobacter vinelandii 3MDO (Av3MDO) in complex with the substrate analog and competitive inhibitor, 3-hydroxypropionic acid (3HPA). The structure together with DFT computational modeling demonstrates that 3HPA and 3MPA associate with iron as chelate complexes with the substrate-carboxylate group forming an additional interaction with Arg168 and the thiol bound at the same position as in CDO. A chloride ligand was bound to iron in the coordination site assigned as the O2-binding site. Supporting HYSCORE spectroscopic experiments were performed on the (3MPA/NO)-bound Av3MDO iron nitrosyl (S = 3/2) site. In combination with spectroscopic simulations and optimized DFT models, this work provides an experimentally verified model of the Av3MDO enzyme-substrate complex, effectively resolving a debate in the literature regarding the preferred substrate-binding denticity. These results elegantly explain the observed 3MDO substrate specificity, but leave unanswered questions regarding the mechanism of substrate-gated reactivity with dioxygen.


Subject(s)
3-Mercaptopropionic Acid/metabolism , Azotobacter vinelandii/enzymology , Dioxygenases/chemistry , Dioxygenases/metabolism , Iron/chemistry , Iron/metabolism , 3-Mercaptopropionic Acid/chemistry , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Binding Sites , Catalytic Domain , Crystallography, X-Ray/methods , Kinetics , Models, Molecular , Substrate Specificity
2.
ACS Chem Biol ; 16(3): 480-490, 2021 03 19.
Article in English | MEDLINE | ID: mdl-33600157

ABSTRACT

In mammals, carotenoids are converted by two carotenoid cleavage oxygenases into apocarotenoids, including vitamin A. Although knowledge about ß-carotene oxygenase-1 (BCO1) and vitamin A metabolism has tremendously increased, the function of ß-carotene oxygenase-2 (BCO2) remains less well-defined. We here studied the role of BCO2 in the metabolism of long chain ß-apocarotenoids, which recently emerged as putative regulatory molecules in mammalian biology. We showed that recombinant murine BCO2 converted the alcohol, aldehyde, and carboxylic acid of a ß-apocarotenoid substrate by oxidative cleavage at position C9,C10 into a ß-ionone and a diapocarotenoid product. Chain length variation (C20 to C40) and ionone ring site modifications of the apocarotenoid substrate did not impede catalytic activity or alter the regioselectivity of the double bond cleavage by BCO2. Isotope labeling experiments revealed that the double bond cleavage of an apocarotenoid followed a dioxygenase reaction mechanism. Structural modeling and site directed mutagenesis identified amino acid residues in the substrate tunnel of BCO2 that are critical for apocarotenoid binding and catalytic processing. Mice deficient for BCO2 accumulated apocarotenoids in their livers, indicating that the enzyme engages in apocarotenoid metabolism. Together, our study provides novel structural and functional insights into BCO2 catalysis and establishes the enzyme as a key component of apocarotenoid homeostasis in mice.


Subject(s)
Carotenoids/metabolism , Dioxygenases/metabolism , Vitamin A/metabolism , Alcohols/chemistry , Aldehydes/chemistry , Carboxylic Acids/chemistry , Carotenoids/chemistry , Catalysis , Cloning, Molecular , Dioxygenases/genetics , Escherichia coli/chemistry , Escherichia coli/genetics , Isotope Labeling , Lipid Metabolism , Models, Molecular , Molecular Structure , Oxidative Stress , Oxygen Isotopes/chemistry , Oxygenases/metabolism , Structure-Activity Relationship , Vitamin A/chemistry , beta Carotene/metabolism
3.
J Biol Chem ; 295(46): 15553-15565, 2020 11 13.
Article in English | MEDLINE | ID: mdl-32873706

ABSTRACT

The enzyme ß-carotene oxygenase 2 (BCO2) converts carotenoids into more polar metabolites. Studies in mammals, fish, and birds revealed that BCO2 controls carotenoid homeostasis and is involved in the pathway for vitamin A production. However, it is controversial whether BCO2 function is conserved in humans, because of a 4-amino acid long insertion caused by a splice acceptor site polymorphism. We here show that human BCO2 splice variants, BCO2a and BCO2b, are expressed as pre-proteins with mitochondrial targeting sequence (MTS). The MTS of BCO2a directed a green fluorescent reporter protein to the mitochondria when expressed in ARPE-19 cells. Removal of the MTS increased solubility of BCO2a when expressed in Escherichia coli and rendered the recombinant protein enzymatically active. The expression of the enzymatically active recombinant human BCO2a was further improved by codon optimization and its fusion with maltose-binding protein. Introduction of the 4-amino acid insertion into mouse Bco2 did not impede the chimeric enzyme's catalytic proficiency. We further showed that the chimeric BCO2 displayed broad substrate specificity and converted carotenoids into two ionones and a central C14-apocarotendial by oxidative cleavage reactions at C9,C10 and C9',C10'. Thus, our study demonstrates that human BCO2 is a catalytically competent enzyme. Consequently, information on BCO2 becomes broadly applicable in human biology with important implications for the physiology of the eyes and other tissues.


Subject(s)
Carotenoids/metabolism , Dioxygenases/metabolism , Mitochondria/enzymology , Animals , Binding Sites , Biocatalysis , Carotenoids/chemistry , Dioxygenases/chemistry , Dioxygenases/genetics , Humans , Mice , Molecular Dynamics Simulation , Protein Isoforms/chemistry , Protein Isoforms/genetics , Protein Isoforms/metabolism , Protein Structure, Tertiary , RNA Splicing , Recombinant Proteins/biosynthesis , Recombinant Proteins/isolation & purification , Retina/metabolism , Solubility , Stereoisomerism , Zeaxanthins/chemistry , Zeaxanthins/metabolism
4.
Proc Natl Acad Sci U S A ; 117(33): 19914-19925, 2020 08 18.
Article in English | MEDLINE | ID: mdl-32747548

ABSTRACT

Apocarotenoids are important signaling molecules generated from carotenoids through the action of carotenoid cleavage dioxygenases (CCDs). These enzymes have a remarkable ability to cleave carotenoids at specific alkene bonds while leaving chemically similar sites within the polyene intact. Although several bacterial and eukaryotic CCDs have been characterized, the long-standing goal of experimentally visualizing a CCD-carotenoid complex at high resolution to explain this exquisite regioselectivity remains unfulfilled. CCD genes are also present in some archaeal genomes, but the encoded enzymes remain uninvestigated. Here, we address this knowledge gap through analysis of a metazoan-like archaeal CCD from Candidatus Nitrosotalea devanaterra (NdCCD). NdCCD was active toward ß-apocarotenoids but did not cleave bicyclic carotenoids. It exhibited an unusual regiospecificity, cleaving apocarotenoids solely at the C14'-C13' alkene bond to produce ß-apo-14'-carotenals. The structure of NdCCD revealed a tapered active site cavity markedly different from the broad active site observed for the retinal-forming Synechocystis apocarotenoid oxygenase (SynACO) but similar to the vertebrate retinoid isomerase RPE65. The structure of NdCCD in complex with its apocarotenoid product demonstrated that the site of cleavage is defined by interactions along the substrate binding cleft as well as selective stabilization of reaction intermediates at the scissile alkene. These data on the molecular basis of CCD catalysis shed light on the origins of the varied catalytic activities found in metazoan CCDs, opening the possibility of modifying their activity through rational chemical or genetic approaches.


Subject(s)
Archaea/enzymology , Archaeal Proteins/chemistry , Carotenoids/metabolism , Dioxygenases/chemistry , Archaea/chemistry , Archaea/classification , Archaea/genetics , Archaeal Proteins/genetics , Archaeal Proteins/metabolism , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Carotenoids/chemistry , Catalysis , Catalytic Domain , Dioxygenases/genetics , Dioxygenases/metabolism , Substrate Specificity , Synechocystis/chemistry , Synechocystis/enzymology , Synechocystis/genetics
5.
J Biol Chem ; 294(27): 10596-10606, 2019 07 05.
Article in English | MEDLINE | ID: mdl-31138651

ABSTRACT

Carotenoid cleavage dioxygenases (CCDs) use a nonheme Fe(II) cofactor to split alkene bonds of carotenoid and stilbenoid substrates. The iron centers of CCDs are typically five-coordinate in their resting states, with solvent occupying an exchangeable site. The involvement of this iron-bound solvent in CCD catalysis has not been experimentally addressed, but computational studies suggest two possible roles. 1) Solvent dissociation provides a coordination site for O2, or 2) solvent remains bound to iron but changes its equilibrium position to allow O2 binding and potentially acts as a proton source. To test these predictions, we investigated isotope effects (H2O versus D2O) on two stilbenoid-cleaving CCDs, Novosphingobium aromaticivorans oxygenase 2 (NOV2) and Neurospora crassa carotenoid oxygenase 1 (CAO1), using piceatannol as a substrate. NOV2 exhibited an inverse isotope effect (kH/kD ∼ 0.6) in an air-saturated buffer, suggesting that solvent dissociates from iron during the catalytic cycle. By contrast, CAO1 displayed a normal isotope effect (kH/kD ∼ 1.7), suggesting proton transfer in the rate-limiting step. X-ray absorption spectroscopy on NOV2 and CAO1 indicated that the protonation states of the iron ligands are unchanged within pH 6.5-8.5 and that the Fe(II)-aquo bond is minimally altered by substrate binding. We pinpointed the origin of the differential kinetic behaviors of NOV2 and CAO1 to a single amino acid difference near the solvent-binding site of iron, and X-ray crystallography revealed that the substitution alters binding of diffusible ligands to the iron center. We conclude that solvent-iron dissociation and proton transfer are both associated with the CCD catalytic mechanism.


Subject(s)
Alkenes/metabolism , Oxygenases/metabolism , Binding Sites , Biocatalysis , Catalytic Domain , Crystallography, X-Ray , Deuterium Exchange Measurement , Hydrogen-Ion Concentration , Iron/chemistry , Iron/metabolism , Kinetics , Mutagenesis, Site-Directed , Neurospora crassa/enzymology , Oxygenases/chemistry , Oxygenases/genetics , Solvents/chemistry , Solvents/metabolism , Sphingomonadaceae/enzymology , Substrate Specificity
6.
Hum Mol Genet ; 27(13): 2225-2243, 2018 07 01.
Article in English | MEDLINE | ID: mdl-29659842

ABSTRACT

RPE65 is the essential trans-cis isomerase of the classical retinoid (visual) cycle. Mutations in RPE65 give rise to severe retinal dystrophies, most of which are associated with loss of protein function and recessive inheritance. The only known exception is a c.1430G>A (D477G) mutation that gives rise to dominant retinitis pigmentosa with delayed onset and choroidal and macular involvement. Position 477 is distant from functionally critical regions of RPE65. Hence, the mechanism of D477G pathogenicity remains unclear, although protein misfolding and aggregation mechanisms have been suggested. We characterized a D477G knock-in mouse model which exhibited mild age-dependent changes in retinal structure and function. Immunoblot analysis of protein extracts from the eyes of these knock-in mice demonstrated the presence of ubiquitinated RPE65 and reduced RPE65 expression. We observed an accumulation of retinyl esters in the knock-in mice as well as a delay in rhodopsin regeneration kinetics and diminished electroretinography responses, indicative of RPE65 functional impairment induced by the D477G mutation in vivo. However, a cell line expressing D477G RPE65 revealed protein expression levels, cellular localization and retinoid isomerase activity comparable to cells expressing wild-type protein. Structural analysis of an RPE65 chimera suggested that the D477G mutation does not perturb protein folding or tertiary structure. Instead, the mutation generates an aggregation-prone surface that could induce cellular toxicity through abnormal complex formation as suggested by crystal packing analysis. These results indicate that a toxic gain-of-function induced by the D477G RPE65 substitution may play a role in the pathogenesis of this form of dominant retinitis pigmentosa.


Subject(s)
Genes, Dominant , Retina/metabolism , Retinitis Pigmentosa/genetics , cis-trans-Isomerases/genetics , Animals , Disease Models, Animal , Gene Expression Regulation/genetics , Gene Knock-In Techniques , Humans , Mice , Mutation , Protein Aggregation, Pathological/genetics , Protein Folding , Retina/pathology , Retinal Cone Photoreceptor Cells/metabolism , Retinal Cone Photoreceptor Cells/pathology , Retinitis Pigmentosa/pathology , cis-trans-Isomerases/chemistry
7.
Inorg Chem ; 57(12): 6847-6852, 2018 Jun 18.
Article in English | MEDLINE | ID: mdl-29575898

ABSTRACT

Early studies in which nitrogenase was freeze-trapped during enzymatic turnover revealed the presence of high-spin ( S = 3/2) electron paramagnetic resonance (EPR) signals from the active-site FeMo-cofactor (FeMo-co) in electron-reduced intermediates of the MoFe protein. Historically denoted as 1b and 1c, each of the signals is describable as a fictitious spin system, S' = 1/2, with anisotropic g' tensor, 1b with g' = [4.21, 3.76, ?] and 1c with g' = [4.69, ∼3.20, ?]. A clear discrepancy between the magnetic properties of 1b and 1c and the kinetic analysis of their appearance during pre-steady-state turnover left their identities in doubt, however. We subsequently associated 1b with the state having accumulated 2[e-/H+], denoted as E2(2H), and suggested that the reducing equivalents are stored on the catalytic FeMo-co cluster as an iron hydride, likely an [Fe-H-Fe] hydride bridge. Intra-EPR cavity photolysis (450 nm; temperature-independent from 4 to 12 K) of the E2(2H)/1b state now corroborates the identification of this state as storing two reducing equivalents as a hydride. Photolysis converts E2(2H)/1b to a state with the same EPR spectrum, and thus the same cofactor structure as pre-steady-state turnover 1c, but with a different active-site environment. Upon annealing of the photogenerated state at temperature T = 145 K, it relaxes back to E2(2H)/1b. This implies that the 1c signal comes from an E2(2H) hydride isomer of E2(2H)/1b that stores its two reducing equivalents either as a hydride bridge between a different pair of iron atoms or an Fe-H terminal hydride.


Subject(s)
Coenzymes/chemistry , Iron/chemistry , Molybdenum/chemistry , Nitrogenase/chemistry , Organometallic Compounds/chemistry , Photolysis , Catalytic Domain , Electron Transport , Models, Molecular , Nitrogenase/metabolism , Temperature
8.
Biochemistry ; 57(6): 978-990, 2018 Feb 13.
Article in English | MEDLINE | ID: mdl-29303562

ABSTRACT

Photoinduced charge-transfer dynamics and the influence of cluster size on the dynamics were investigated using five iron-sulfur clusters: the 1Fe-4S cluster in Pyrococcus furiosus rubredoxin, the 2Fe-2S cluster in Pseudomonas putida putidaredoxin, the 4Fe-4S cluster in nitrogenase iron protein, and the 8Fe-7S P-cluster and the 7Fe-9S-1Mo FeMo cofactor in nitrogenase MoFe protein. Laser excitation promotes the iron-sulfur clusters to excited electronic states that relax to lower states. The electronic relaxation lifetimes of the 1Fe-4S, 8Fe-7S, and 7Fe-9S-1Mo clusters are on the picosecond time scale, although the dynamics of the MoFe protein is a mixture of the dynamics of the latter two clusters. The lifetimes of the 2Fe-2S and 4Fe-4S clusters, however, extend to several nanoseconds. A competition between reorganization energies and the density of electronic states (thus electronic coupling between states) mediates the charge-transfer lifetimes, with the 2Fe-2S cluster of Pdx and the 4Fe-4S cluster of Fe protein lying at the optimum leading to them having significantly longer lifetimes. Their long lifetimes make them the optimal candidates for long-range electron transfer and as external photosensitizers for other photoactivated chemical reactions like solar hydrogen production. Potential electron-transfer and hole-transfer pathways that possibly facilitate these charge transfers are proposed.


Subject(s)
Bacteria/chemistry , Bacterial Proteins/chemistry , Iron-Sulfur Proteins/chemistry , Azotobacter vinelandii/chemistry , Catalytic Domain , Electron Transport , Ferredoxins/chemistry , Models, Molecular , Oxidation-Reduction , Oxidoreductases/chemistry , Protein Conformation , Pseudomonas putida/chemistry , Pyrococcus furiosus/chemistry , Rubredoxins/chemistry
9.
J Am Chem Soc ; 139(38): 13518-13524, 2017 09 27.
Article in English | MEDLINE | ID: mdl-28851217

ABSTRACT

Nitrogenase catalyzes the reduction of dinitrogen (N2) to two ammonia (NH3) at its active site FeMo-cofactor through a mechanism involving reductive elimination of two [Fe-H-Fe] bridging hydrides to make H2. A competing reaction is the protonation of the hydride [Fe-H-Fe] to make H2. The overall nitrogenase rate-limiting step is associated with ATP-driven electron delivery from Fe protein, precluding isotope effect measurements on substrate reduction steps. Here, we use mediated bioelectrocatalysis to drive electron delivery to the MoFe protein allowing examination of the mechanism of H2 formation by the metal-hydride protonation reaction. The ratio of catalytic current in mixtures of H2O and D2O, the proton inventory, was found to change linearly with the D2O/H2O ratio, revealing that a single H/D is involved in the rate-limiting step of H2 formation. Kinetic models, along with measurements that vary the electron/proton delivery rate and use different substrates, reveal that the rate-limiting step under these conditions is the H2 formation reaction. Altering the chemical environment around the active site FeMo-cofactor in the MoFe protein, either by substituting nearby amino acids or transferring the isolated FeMo-cofactor into a different peptide matrix, changes the net isotope effect, but the proton inventory plot remains linear, consistent with an unchanging rate-limiting step. Density functional theory predicts a transition state for H2 formation where the S-H+ bond breaks and H+ attacks the Fe-hydride, and explains the observed H/D isotope effect. This study not only reveals the nitrogenase mechanism of H2 formation by hydride protonation, but also illustrates a strategy for mechanistic study that can be applied to other oxidoreductase enzymes and to biomimetic complexes.


Subject(s)
Deuterium/chemistry , Hydrogen/chemistry , Metals/chemistry , Nitrogenase/metabolism , Protons , Azotobacter vinelandii/chemistry , Catalysis , Kinetics , Molybdoferredoxin/metabolism , Oxidation-Reduction
10.
Inorg Chem ; 56(4): 2233-2240, 2017 Feb 20.
Article in English | MEDLINE | ID: mdl-28177622

ABSTRACT

N2 reduction by nitrogenase involves the accumulation of four reducing equivalents at the active site FeMo-cofactor to form a state with two [Fe-H-Fe] bridging hydrides (denoted E4(4H), the Janus intermediate), and we recently demonstrated that the enzyme is activated to cleave the N≡N triple bond by the reductive elimination (re) of H2 from this state. We are exploring a photochemical approach to obtaining atomic-level details of the re activation process. We have shown that, when E4(4H) at cryogenic temperatures is subjected to 450 nm irradiation in an EPR cavity, it cleanly undergoes photoinduced re of H2 to give a reactive doubly reduced intermediate, denoted E4(2H)*, which corresponds to the intermediate that would form if thermal dissociative re loss of H2 preceded N2 binding. Experiments reported here establish that photoinduced re primarily occurs in two steps. Photolysis of E4(4H) generates an intermediate state that undergoes subsequent photoinduced conversion to [E4(2H)* + H2]. The experiments, supported by DFT calculations, indicate that the trapped intermediate is an H2 complex on the ground adiabatic potential energy suface that connects E4(4H) with [E4(2H)* + H2]. We suggest that this complex, denoted E4(H2; 2H), is a thermally populated intermediate in the catalytically central re of H2 by E4(4H) and that N2 reacts with this complex to complete the activated conversion of [E4(4H) + N2] into [E4(2N2H) + H2].


Subject(s)
Hydrogen/metabolism , Molybdoferredoxin/metabolism , Nitrogenase/metabolism , Hydrogen/chemistry , Molecular Structure , Molybdoferredoxin/chemistry , Nitrogenase/chemistry , Oxidation-Reduction , Photochemical Processes , Ultraviolet Rays
11.
Isr J Chem ; 56(9-10): 841-851, 2016 Oct.
Article in English | MEDLINE | ID: mdl-27777444

ABSTRACT

We combine cryoreduction/annealing/EPR measurements of nitrogenase MoFe protein with results of earlier investigations to provide a detailed view of the electron/proton transfer events and conformational changes that occur during early stages of [e-/H+] accumulation by the MoFe protein. This includes reduction of (i) the non-catalytic state of the iron-molybdenum cofactor (FeMo-co) active site that is generated by chemical oxidation of the resting-state cofactor (S = 3/2)) within resting MoFe (E0), and (ii) the catalytic state that has accumulated n =1 [e-/H+] above the resting-state level, denoted E1(1H) (S ≥ 1) in the Lowe-Thorneley kinetic scheme. FeMo-co does not undergo a major change of conformation during reduction of oxidized FeMo-co. In contrast, FeMo-co undergoes substantial conformational changes during the reduction of E0 to E1(1H), and of E1(1H) to E2(2H) (n = 2; S = 3/2). The experimental results further suggest that the E1(1H) → E2(2H) step involves coupled delivery of a proton and electron (PCET) to FeMo-co of E1(H) to generate a non-equilibrium S = ½ form E2(2H)*. This subsequently undergoes conformational relaxation and attendant change in FeMo-co spin state, to generate the equilibrium E2(2H) (S = 3/2) state. Unexpectedly, these experiments also reveal conformational coupling between FeMo-co and P-cluster, and between Fe protein binding and FeMo-co, which might play a role in gated ET from reduced Fe protein to FeMo-co.

12.
J Am Chem Soc ; 138(33): 10674-83, 2016 08 24.
Article in English | MEDLINE | ID: mdl-27529724

ABSTRACT

We proposed a reductive elimination/oxidative addition (re/oa) mechanism for reduction of N2 to 2NH3 by nitrogenase, based on identification of a freeze-trapped intermediate of the α-70(Val→Ile) MoFe protein as the Janus intermediate that stores four reducing equivalents on FeMo-co as two [Fe-H-Fe] bridging hydrides (denoted E4(4H)). The mechanism postulates that obligatory re of the hydrides as H2 drives reduction of N2 to a state (denoted E4(2N2H)) with a moiety at the diazene (HN═NH) reduction level bound to the catalytic FeMo-co. EPR/ENDOR/photophysical measurements on wild type (WT) MoFe protein now establish this mechanism. They show that a state freeze-trapped during N2 reduction by WT MoFe is the same Janus intermediate, thereby establishing the α-70(Val→Ile) intermediate as a reliable guide to mechanism. Monitoring the Janus state in WT MoFe during N2 reduction under mixed-isotope condition, H2O buffer/D2, and the converse, establishes that the bridging hydrides/deuterides do not exchange with solvent during enzymatic turnover, thereby solving longstanding puzzles. Relaxation of E4(2N2H) to the WT resting-state is shown to occur via oa of H2 and release of N2 to form Janus, followed by sequential release of two H2, demonstrating the kinetic reversibility of the re/oa equilibrium. Relative populations of E4(2N2H)/E4(4H) freeze-trapped during WT turnover furthermore show that the reversible re/oa equilibrium between [E4(4H) + N2] and [E4(2N2H) + H2] is ∼ thermoneutral (ΔreG(0) ∼ -2 kcal/mol), whereas, by itself, hydrogenation of N2(g) is highly endergonic. These findings demonstrate that (i) re/oa accounts for the historical Key Constraints on mechanism, (ii) that Janus is central to N2 reduction by WT enzyme, which (iii) indeed occurs via the re/oa mechanism. Thus, emerges a picture of the central mechanistic steps by which nitrogenase carries out one of the most challenging chemical transformations in biology.


Subject(s)
Hydrogen/metabolism , Nitrogen/metabolism , Nitrogenase/metabolism , Kinetics , Models, Molecular , Nitrogenase/chemistry , Oxidation-Reduction , Protein Conformation
13.
Inorg Chem ; 55(17): 8321-30, 2016 Sep 06.
Article in English | MEDLINE | ID: mdl-27500789

ABSTRACT

The reduction of N2 to NH3 by Mo-dependent nitrogenase at its active-site metal cluster FeMo-cofactor utilizes reductive elimination of Fe-bound hydrides with obligatory loss of H2 to activate the enzyme for binding/reduction of N2. Earlier work showed that wild-type nitrogenase and a nitrogenase with amino acid substitutions in the MoFe protein near FeMo-cofactor can catalytically reduce CO2 by two or eight electrons/protons to carbon monoxide (CO) and methane (CH4) at low rates. Here, it is demonstrated that nitrogenase preferentially reduces CO2 by two electrons/protons to formate (HCOO(-)) at rates >10 times higher than rates of CO2 reduction to CO and CH4. Quantum mechanical calculations on the doubly reduced FeMo-cofactor with a Fe-bound hydride and S-bound proton (E2(2H) state) favor a direct reaction of CO2 with the hydride ("direct hydride transfer" reaction pathway), with facile hydride transfer to CO2 yielding formate. In contrast, a significant barrier is observed for reaction of Fe-bound CO2 with the hydride ("associative" reaction pathway), which leads to CO and CH4. Remarkably, in the direct hydride transfer pathway, the Fe-H behaves as a hydridic hydrogen, whereas in the associative pathway it acts as a protic hydrogen. MoFe proteins with amino acid substitutions near FeMo-cofactor (α-70(Val→Ala), α-195(His→Gln)) are found to significantly alter the distribution of products between formate and CO/CH4.


Subject(s)
Azotobacter vinelandii/enzymology , Carbon Dioxide/metabolism , Carbon Monoxide/metabolism , Formates/metabolism , Methane/metabolism , Molybdoferredoxin/metabolism , Azotobacter vinelandii/metabolism , Nitrogenase/metabolism , Oxidation-Reduction
14.
Science ; 352(6284): 448-50, 2016 Apr 22.
Article in English | MEDLINE | ID: mdl-27102481

ABSTRACT

The splitting of dinitrogen (N2) and reduction to ammonia (NH3) is a kinetically complex and energetically challenging multistep reaction. In the Haber-Bosch process, N2 reduction is accomplished at high temperature and pressure, whereas N2 fixation by the enzyme nitrogenase occurs under ambient conditions using chemical energy from adenosine 5'-triphosphate (ATP) hydrolysis. We show that cadmium sulfide (CdS) nanocrystals can be used to photosensitize the nitrogenase molybdenum-iron (MoFe) protein, where light harvesting replaces ATP hydrolysis to drive the enzymatic reduction of N2 into NH3 The turnover rate was 75 per minute, 63% of the ATP-coupled reaction rate for the nitrogenase complex under optimal conditions. Inhibitors of nitrogenase (i.e., acetylene, carbon monoxide, and dihydrogen) suppressed N2 reduction. The CdS:MoFe protein biohybrids provide a photochemical model for achieving light-driven N2 reduction to NH3.


Subject(s)
Cadmium Compounds/chemistry , Molybdoferredoxin/chemistry , Nitrogen/chemistry , Nitrogenase/chemistry , Sulfides/chemistry , Adenosine Triphosphate/chemistry , Ammonia/chemistry , Catalysis/radiation effects , Hydrolysis/radiation effects , Light , Nanoparticles/chemistry , Nitrogen Fixation , Nitrogenase/radiation effects , Oxidation-Reduction/drug effects , Oxidation-Reduction/radiation effects
15.
J Am Chem Soc ; 138(4): 1320-7, 2016 Feb 03.
Article in English | MEDLINE | ID: mdl-26788586

ABSTRACT

We recently demonstrated that N2 reduction by nitrogenase involves the obligatory release of one H2 per N2 reduced. These studies focus on the E4(4H) "Janus intermediate", which has accumulated four reducing equivalents as two [Fe-H-Fe] bridging hydrides. E4(4H) is poised to bind and reduce N2 through reductive elimination (re) of the two hydrides as H2, coupled to the binding/reduction of N2. To obtain atomic-level details of the re activation process, we carried out in situ 450 nm photolysis of E4(4H) in an EPR cavity at temperatures below 20 K. ENDOR and EPR measurements show that photolysis generates a new FeMo-co state, denoted E4(2H)*, through the photoinduced re of the two bridging hydrides of E4(4H) as H2. During cryoannealing at temperatures above 175 K, E4(2H)* reverts to E4(4H) through the oxidative addition (oa) of the H2. The photolysis quantum yield is temperature invariant at liquid helium temperatures and shows a rather large kinetic isotope effect, KIE = 10. These observations imply that photoinduced release of H2 involves a barrier to the combination of the two nascent H atoms, in contrast to a barrierless process for monometallic inorganic complexes, and further suggest that H2 formation involves nuclear tunneling through that barrier. The oa recombination of E4(2H)* with the liberated H2 offers compelling evidence for the Janus intermediate as the point at which H2 is necessarily lost during N2 reduction; this mechanistically coupled loss must be gated by N2 addition that drives the re/oa equilibrium toward reductive elimination of H2 with N2 binding/reduction.


Subject(s)
Hydrogen/chemistry , Nitrogenase/chemistry , Photochemistry , Electron Spin Resonance Spectroscopy , Kinetics , Oxidation-Reduction
16.
J Am Chem Soc ; 137(10): 3610-5, 2015 Mar 18.
Article in English | MEDLINE | ID: mdl-25741750

ABSTRACT

Freeze-quenching nitrogenase during turnover with N2 traps an S = ½ intermediate that was shown by ENDOR and EPR spectroscopy to contain N2 or a reduction product bound to the active-site molybdenum-iron cofactor (FeMo-co). To identify this intermediate (termed here EG), we turned to a quench-cryoannealing relaxation protocol. The trapped state is allowed to relax to the resting E0 state in frozen medium at a temperature below the melting temperature; relaxation is monitored by periodically cooling the sample to cryogenic temperature for EPR analysis. During -50 °C cryoannealing of EG prepared under turnover conditions in which the concentrations of N2 and H2 ([H2], [N2]) are systematically and independently varied, the rate of decay of EG is accelerated by increasing [H2] and slowed by increasing [N2] in the frozen reaction mixture; correspondingly, the accumulation of EG is greater with low [H2] and/or high [N2]. The influence of these diatomics identifies EG as the key catalytic intermediate formed by reductive elimination of H2 with concomitant N2 binding, a state in which FeMo-co binds the components of diazene (an N-N moiety, perhaps N2 and two [e(-)/H(+)] or diazene itself). This identification combines with an earlier study to demonstrate that nitrogenase is activated for N2 binding and reduction through the thermodynamically and kinetically reversible reductive-elimination/oxidative-addition exchange of N2 and H2, with an implied limiting stoichiometry of eight electrons/protons for the reduction of N2 to two NH3.


Subject(s)
Biocatalysis , Hydrogen/metabolism , Nitrogen/metabolism , Nitrogenase/metabolism , Catalytic Domain , Coenzymes/metabolism , Electron Spin Resonance Spectroscopy , Enzyme Activation , Kinetics , Nitrogenase/chemistry , Temperature
17.
Proc Natl Acad Sci U S A ; 110(41): 16327-32, 2013 Oct 08.
Article in English | MEDLINE | ID: mdl-24062454

ABSTRACT

Nitrogenase is activated for N2 reduction by the accumulation of four electrons/protons on its active site FeMo-cofactor, yielding a state, designated as E4, which contains two iron-bridging hydrides [Fe-H-Fe]. A central puzzle of nitrogenase function is an apparently obligatory formation of one H2 per N2 reduced, which would "waste" two reducing equivalents and four ATP. We recently presented a draft mechanism for nitrogenase that provides an explanation for obligatory H2 production. In this model, H2 is produced by reductive elimination of the two bridging hydrides of E4 during N2 binding. This process releases H2, yielding N2 bound to FeMo-cofactor that is doubly reduced relative to the resting redox level, and thereby is activated to promptly generate bound diazene (HN=NH). This mechanism predicts that during turnover under D2/N2, the reverse reaction of D2 with the N2-bound product of reductive elimination would generate dideutero-E4 [E4(2D)], which can relax with loss of HD to the state designated E2, with a single deuteride bridge [E2(D)]. Neither of these deuterated intermediate states could otherwise form in H2O buffer. The predicted E2(D) and E4(2D) states are here established by intercepting them with the nonphysiological substrate acetylene (C2H2) to generate deuterated ethylenes (C2H3D and C2H2D2). The demonstration that gaseous H2/D2 can reduce a substrate other than H(+) with N2 as a cocatalyst confirms the essential mechanistic role for H2 formation, and hence a limiting stoichiometry for biological nitrogen fixation of eight electrons/protons, and provides direct experimental support for the reductive elimination mechanism.


Subject(s)
Hydrogen/metabolism , Molybdoferredoxin/metabolism , Nitrogen Fixation/physiology , Nitrogen/metabolism , Nitrogenase/metabolism , Carbon Isotopes/metabolism , Gas Chromatography-Mass Spectrometry , Oxidation-Reduction
SELECTION OF CITATIONS
SEARCH DETAIL
...