Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Hortic Res ; 8(1): 13, 2021 Jan 01.
Article in English | MEDLINE | ID: mdl-33384417

ABSTRACT

Soft rot disease caused by Pectobacterium spp. is responsible for severe agricultural losses in potato, vegetables, and ornamentals. The genus Zantedeschia includes two botanical groups of tuberous ornamental flowers that are highly susceptible to the disease. Previous studies revealed that Z. aethiopica, a member of the section Zantedeschia, is significantly more resistant to Pectobacterium spp. than members of the same genus that belong to the section Aestivae. During early infection, we found different patterns of bacterial colonization on leaves of hosts belonging to the different sections. Similar patterns of bacterial colonization were observed on polydimethylsiloxane (PDMS) artificial inert replicas of leaf surfaces. The replicas confirmed the physical effect of leaf texture, in addition to a biochemical plant-bacterium interaction. The differential patterns may be associated with the greater roughness of the abaxial leaf surfaces of Aestivae group that have evolutionarily adapted to mountainous environments, as compared to Zantedeschia group species that have adapted to warm, marshy environments. Transverse leaf sections also revealed compact aerenchyma and reduced the total volume of leaf tissue air spaces in Aestivae members. Finally, an analysis of defense marker genes revealed differential expression patterns in response to infection, with significantly higher levels of lipoxygenase 2 (lox2) and phenylalanine ammonia lyase (pal) observed in the more resistant Z. aethiopica, suggesting greater activation of induced systemic resistance (ISR) mechanisms in this group. The use of Zantedeschia as a model plant sheds light on how natural ecological adaptations may underlay resistance to bacterial soft rot in cultivated agricultural environments.

2.
Microorganisms ; 8(10)2020 Sep 26.
Article in English | MEDLINE | ID: mdl-32993160

ABSTRACT

Recent phylogenetic studies have transferred certain isolates from monocot plants previously included in the heterogeneous group of Pectobacteriumcarotovorum (Pc) to a species level termed Pectobacterium aroidearum. The specificity of Pectobacterium associated infections had received less attention, and may be of high scientific and economic importance. Here, we have characterized differential responses of Pectobacterium isolates from potato (WPP14) and calla lily (PC16) on two typical hosts: Brassica oleracea var. capitata (cabbage) a dicot host; and Zantedeschia aethiopica (calla lily) a monocot host. The results revealed clear host specific responses following infection with the two bacterial strains. This was demonstrated by differential production of volatile organic compounds (VOCs) and the expression of plant defense-related genes (pal, PR-1, lox2, ast). A related pattern was observed in bacterial responses to each of the host's extract, with differential expression of virulence-related determinants and genes associated with quorum-sensing and plant cell wall-degrading enzymes. The differences were associated with each strain's competence on its respective host.

3.
ACS Chem Biol ; 15(7): 1883-1891, 2020 07 17.
Article in English | MEDLINE | ID: mdl-32392032

ABSTRACT

Salicylic acid (SA) is a hormone that mediates systemic acquired resistance in plants. We demonstrated that SA can interfere with group behavior and virulence of the soft-rot plant pathogen Pectobacterium spp. through quorum sensing (QS) inhibition. QS is a population density-dependent communication system that relies on the signal molecule acyl-homoserine lactone (AHL) to synchronize infection. P. parmentieri mutants, lacking the QS AHL synthase (expI-) or the response regulator (expR-), were used to determine how SA inhibits QS. ExpI was expressed in DH5α, the QS negative strain of Escherichia coli, revealing direct interference of SA with AHL synthesis. Docking simulations showed SA is a potential ExpI ligand. This hypothesis was further confirmed by direct binding of SA to purified ExpI, shown by isothermal titration calorimetry and microscale thermophoresis. Computational alanine scanning was employed to design a mutant ExpI with predicted weaker binding affinity to SA. The mutant was constructed and displayed lower affinity to the ligand in the binding assay, and its physiological inhibition by SA was reduced. Taken together, these data support a likely mode of action and a role for SA as potent inhibitor of AHL synthase and QS.


Subject(s)
Bacterial Proteins/metabolism , Ligases/metabolism , Pectobacterium/pathogenicity , Salicylic Acid/metabolism , Bacterial Proteins/genetics , Gene Expression Regulation, Bacterial/drug effects , Ligases/genetics , Molecular Docking Simulation , Mutation , Pectobacterium/enzymology , Protein Binding , Quorum Sensing/drug effects , Solanum tuberosum/microbiology , Virulence/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...