Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Syst Evol Microbiol ; 70(4): 2499-2508, 2020 Apr.
Article in English | MEDLINE | ID: mdl-32559826

ABSTRACT

An aerobic methane oxidizing bacterium, designated XLMV4T, was isolated from the oxic surface layer of an oil sands tailings pond in Alberta, Canada. Strain XLMV4T is capable of growth on methane and methanol as energy sources. NH4Cl and sodium nitrate are nitrogen sources. Cells are Gram-negative, beige to yellow-pigmented, motile (via a single polar flagellum), short rods 2.0-3.3 µm in length and 1.0-1.6 µm in width. A thick capsule is produced. Surface glycoprotein or cup shape proteins typical of the genera Methylococcus, Methylothermus and Methylomicrobium were not observed. Major isoprenoid quinones are Q-8 and Q-7 at an approximate molar ratio of 71 : 22. Major polar lipids are phosphoglycerol and ornithine lipids. Major fatty acids are C16 : 1 ω8+C16 : 1 ω7 (34 %), C16 : 1 ω5 (16 %), and C18 : 1 ω7 (11 %). Optimum growth is observed at pH 8.0 and 25 °C. The DNA G+C content based on a draft genome sequence is 46.7 mol%. Phylogenetic analysis of 16S rRNA genes and a larger set of conserved genes place strain XLMV4T within the class Gammaproteobacteria and family Methylococcaceae, most closely related to members of the genera Methylomicrobium and Methylobacter (95.0-97.1 % 16S rRNA gene sequence identity). In silico genomic predictions of DNA-DNA hybridization values of strain XLMV4T to the nearest phylogenetic neighbours were all below 26 %. On the basis of the data presented, strain XLMV4T is considered to represent a new genus and species for which the name Methylicorpusculum oleiharenae is proposed. Strain XLMV4T (=DSMZ DSM 27269=ATCC TSD-186) is the type strain.


Subject(s)
Methylococcaceae/classification , Oil and Gas Fields/microbiology , Phylogeny , Ponds/microbiology , Alberta , Bacterial Typing Techniques , Base Composition , DNA, Bacterial/genetics , Fatty Acids/chemistry , Methane/metabolism , Methanol/metabolism , Methylococcaceae/isolation & purification , Nucleic Acid Hybridization , Pigmentation , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , Ubiquinone/chemistry
2.
Biosens Bioelectron ; 153: 112040, 2020 Apr 01.
Article in English | MEDLINE | ID: mdl-31989943

ABSTRACT

Insect odorant receptors (ORs) are believed to be a complex of an odorant binding subunit, OrX, and an ion channel forming subunit, Orco. In our previous study, we showed that the OrX subunit on its own in liposomes could detect volatile organic compounds (VOCs) ultrasensitively using Electrochemical Impedance Spectroscopy (EIS). In this study, we investigated the effect of the presence of Orco on the response of the OrX subunit to detect the VOCs. The OrXs - Or10a, Or22a, Or35a and Or71a, together with Orco, were recombinantly expressed, purified and integrated into liposomes. These OrX/Orco liposomes were covalently attached to a gold surface modified with N-hydroxysuccinimide/1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide) (NHS/EDC)-activated self-assembled monolayers (SAMs) of 6-mercaptohexanoic acid (MHA). It was demonstrated that the OrX/Orco liposomes could sensitively and selectively detect their ligands by monitoring a change in frequency and impedance signal upon binding with both Quartz Crystal Microbalance with Dissipation monitoring (QCM-D) and EIS. Using EIS, three OrXs (Or10a, Or22a and Or35a) showed a shift in their dose-response curves when Orco was co-integrated, reflecting an increase in ligand sensitivity and a decrease in limit of detection (LOD). Or71a in the presence of Orco did not show any improvement in ligand sensitivity as this is a highly tuned receptor which may be already at the sensitivity limit for EIS. The observed enhancement in sensor performance is believed to be an effect of Orco which is stabilizing the OrX in a more active conformation and amplifying charge transfer to result in a greater reduction in impedance.


Subject(s)
Receptors, Odorant/analysis , Volatile Organic Compounds/analysis , Animals , Biosensing Techniques/instrumentation , Dielectric Spectroscopy , Electrodes , Ethyldimethylaminopropyl Carbodiimide/chemistry , Gold/chemistry , Insecta , Limit of Detection , Liposomes/chemistry , Picolinic Acids/chemistry , Sensitivity and Specificity , Succinimides/chemistry , Surface Properties
3.
RSC Adv ; 10(38): 22533-22541, 2020 Jun 10.
Article in English | MEDLINE | ID: mdl-35514553

ABSTRACT

Herein, in situ vapor-phase polymerization (VPP) of pyrrole on an oxidant-impregnated styrene-ethylene-butylene-styrene (SEBS) matrix comprising a three-dimensional sugar particle assembly was used to produce a soft and porous polypyrrole (PPy)-SEBS hybrid scaffold. Characterization of the PPy-SEBS hybrid scaffold using field-effect scanning electron microscopy, Fourier-transform infrared spectroscopy, energy-dispersive X-ray spectroscopy, and micro-computerized tomography confirmed the successful uniform and homogenous polymerization of PPy onto the SEBS matrix with a porous morphology. The performance of the hybrid scaffold of different pore sizes as an ammonia sensor under different temperature conditions was evaluated in terms of resistance change. The results showed that the PPy-SEBS scaffolds of larger pore size had higher resistance changes under lower temperature conditions when ammonia (NH3) gas was introduced compared to those observed for smaller pore sizes under higher temperature conditions. These scaffolds showed excellent repeatability and reversibility in detecting NH3 gas with fast response and recovery times of 30 s and 10-15 min, respectively. Moreover, the larger pore size scaffolds polymerized for a longer time possessed a remarkable ability to be applied as strain sensors. These kinds of novel, soft, and porous conductive polymer composite materials produced by VPP will have huge practical applications in monitoring other toxic and non-toxic gases.

4.
Int Health ; 12(2): 125-131, 2020 02 12.
Article in English | MEDLINE | ID: mdl-31294785

ABSTRACT

BACKGROUND: Due to the limited number of studies in low- and middle-income countries (LMICs), this study aimed to identify the prevalence and determinants of postpartum poor maternal sleep and depression. METHODS: This cross-sectional study was conducted with 380 women who were 2-12 months postpartum in March and April 2017 in Ramechhap district, Nepal. Multiple logistic regression was used to identify the associated factors. RESULTS: The prevalence of poor sleep quality and depression was 28.2% and 18.7%, respectively. Poor sleep quality was associated with having an occupation (in government or business, odds ratio [OR] 6.69; in agriculture/labour, OR 15.5), a male infant (OR 2.37), home delivery (OR 2.17), mental illness during pregnancy (OR 5.87), complications after delivery (OR 5.58) and postpartum depression (OR 2.86). Meanwhile, postpartum depression was associated with having no post-natal care (OR 98.7), living in a nuclear family (OR 48.5), living in a rural area (OR 26.6), having a male infant (OR 4.61), having complications after delivery (OR 21.9), introducing complementary foods before 6 months of age (OR 4.71) and having poor sleep quality (OR 3.20). CONCLUSIONS: A relatively high prevalence of depression and poor sleep quality were found. The close positive association between poor sleep quality and depression suggests the need for early identification and support for women at risk of poor sleep quality and depression in Nepal.


Subject(s)
Depression, Postpartum/epidemiology , Postpartum Period/psychology , Sleep Wake Disorders/epidemiology , Adult , Cross-Sectional Studies , Female , Humans , Nepal/epidemiology , Pregnancy , Prevalence , Risk Factors
5.
ISME J ; 14(3): 714-726, 2020 03.
Article in English | MEDLINE | ID: mdl-31796935

ABSTRACT

Copper-containing membrane monooxygenases (CuMMOs) are encoded by xmoCAB(D) gene clusters and catalyze the oxidation of methane, ammonia, or some short-chain alkanes and alkenes. In a metagenome constructed from an oilsands tailings pond we detected an xmoCABD gene cluster with <59% derived protein sequence identity to genes from known bacteria. Stable isotope probing experiments combined with a specific xmoA qPCR assay demonstrated that the bacteria possessing these genes were incapable of methane assimilation, but did grow on ethane and propane. Single-cell amplified genomes (SAGs) from propane-enriched samples were screened with the specific PCR assay to identify bacteria possessing the target gene cluster. Multiple SAGs of Betaproteobacteria belonging to the genera Rhodoferax and Polaromonas possessed homologues of the metagenomic xmoCABD gene cluster. Unexpectedly, each of these two genera also possessed other xmoCABD paralogs, representing two additional lineages in phylogenetic analyses. Metabolic reconstructions from SAGs predicted that neither bacterium encoded enzymes with the potential to support catabolic methane or ammonia oxidation, but that both were capable of higher n-alkane degradation. The involvement of the encoded CuMMOs in alkane oxidation was further suggested by reverse transcription PCR analyses, which detected elevated transcription of the xmoA genes upon enrichment of water samples with propane as the sole energy source. Enrichments, isotope incorporation studies, genome reconstructions, and gene expression studies therefore all agreed that the unknown xmoCABD operons did not encode methane or ammonia monooxygenases, but rather n-alkane monooxygenases. This study broadens the known diversity of CuMMOs and identifies these enzymes in non-nitrifying Betaproteobacteria.


Subject(s)
Alkanes/metabolism , Bacterial Proteins/metabolism , Betaproteobacteria/enzymology , Mixed Function Oxygenases/metabolism , Ammonia/metabolism , Bacterial Proteins/genetics , Betaproteobacteria/classification , Betaproteobacteria/genetics , Betaproteobacteria/metabolism , Copper/metabolism , Metagenome , Methane/metabolism , Mixed Function Oxygenases/genetics , Multigene Family , Oxidation-Reduction , Oxidoreductases/genetics , Oxidoreductases/metabolism , Phylogeny , Ponds/microbiology
6.
Biosens Bioelectron ; 126: 207-213, 2019 Feb 01.
Article in English | MEDLINE | ID: mdl-30415156

ABSTRACT

Herein, we present that insect odorant receptors reconstituted into the lipid bilayers of liposomes can be successfully immobilized onto a gold surface and selectively and sensitively detect odorant molecules. The odorant receptors (OrXs) Or10a, Or22a, and Or71a from the common fruit fly, Drosophila melanogaster, were recombinantly expressed, purified and integrated into nano-liposomes (100-200 nm). These liposomes were covalently attached to the self-assembled monolayers (SAMs) of a 6-mercaptohexanoic acid (MHA)-modified gold surface. X-ray Photo Electron Spectroscopy (XPS) and Quartz Crystal Microbalance with Dissipation (QCM-D) measurements confirmed the successful modification of the gold surface and immobilization of liposomes. Atomic Force Microscopy (AFM) revealed that the liposomes were covalently attached to the surface without any disruption of vesicles. The liposomes tethered to the gold sensor surface were then treated with a range of known ligands of various concentrations. We demonstrated by Electrochemical Impedance Spectroscopy (EIS) that an OrX/liposome EIS sensor can sensitively and selectively detect its known ligand to femtomolar concentrations by detecting a change in electrical signal upon binding. Our study is the first step towards using purified insect odorant receptors alone in biosensors to enable the development of novel ultrasensitive volatile sensors for medical diagnostic, air quality, food safety and border security applications.


Subject(s)
Biosensing Techniques , Drosophila Proteins/chemistry , Odorants/analysis , Receptors, Odorant/chemistry , Animals , Dielectric Spectroscopy , Drosophila melanogaster/chemistry , Liposomes/chemistry , Microscopy, Atomic Force , Quartz Crystal Microbalance Techniques , Surface Properties
7.
Data Brief ; 21: 2142-2148, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30533465

ABSTRACT

Insect Odorant receptors (OrXs) can be used as the recognition element in a biosensor as they demonstrate high levels of sensitivity and selectivity towards volatile organic compounds. Herein, we describe a method to express and purify insect odorant receptors and reconstitute them into artificial lipid bilayers (liposomes). These OrX/liposomes were covalently attached to a gold surface and characterized using quartz crystal microbalance with dissipation monitoring (QCM-D). The interaction of OrX/liposomes immobilized on a gold surface to positive and negative odorants were studied by means of electrochemical impedance spectroscopy (EIS) and QCM-D. The data presented in this article are related to the research article titled "An ultrasensitive electrochemical impedance-based biosensor using insect odorant receptors to detect odorants" [1].

8.
Front Microbiol ; 9: 2493, 2018.
Article in English | MEDLINE | ID: mdl-30420840

ABSTRACT

Copper membrane monooxygenases (CuMMOs) oxidize ammonia, methane and some short-chain alkanes and alkenes. They are encoded by three genes, usually in an operon of xmoCAB. We aligned xmo operons from 66 microbial genomes, including members of the Alpha-, Beta-, and Gamma-proteobacteria, Verrucomicrobia, Actinobacteria, Thaumarchaeota and the candidate phylum NC10. Phylogenetic and compositional analyses were used to reconstruct the evolutionary history of the enzyme and detect potential lateral gene transfer (LGT) events. The phylogenetic analyses showed at least 10 clusters corresponding to a combination of substrate specificity and bacterial taxonomy, but with no overriding structure based on either function or taxonomy alone. Adaptation of the enzyme to preferentially oxidize either ammonia or methane has occurred more than once. Individual phylogenies of all three genes, xmoA, xmoB and xmoC, closely matched, indicating that this operon evolved or was consistently transferred as a unit, with the possible exception of the methane monooxygenase operons in Verrucomicrobia, where the pmoB gene has a distinct phylogeny from pmoA and pmoC. Compositional analyses indicated that some clusters of xmoCAB operons (for example, the pmoCAB in gammaproteobacterial methanotrophs and the amoCAB in betaproteobacterial nitrifiers) were compositionally very different from their genomes, possibly indicating recent lateral transfer of these operons. The combined phylogenetic and compositional analyses support the hypothesis that an ancestor of the nitrifying bacterium Nitrosococcus was the donor of methane monooxygenase (pMMO) to both the alphaproteobacterial and gammaproteobacterial methanotrophs, but that before this event the gammaproteobacterial methanotrophs originally possessed another CuMMO (Pxm), which has since been lost in many species.

9.
Environ Microbiol ; 16(6): 1867-78, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24650084

ABSTRACT

Recently, methanotrophic members of the phylum Verrucomicrobia have been described, but little is known about their distribution in nature. We surveyed methanotrophic bacteria in geothermal springs and acidic wetlands via pyrosequencing of 16S rRNA gene amplicons. Putative methanotrophic Verrucomicrobia were found in samples covering a broad temperature range (22.5-81.6°C), but only in acidic conditions (pH 1.8-5.0) and only in geothermal environments, not in acidic bogs or fens. Phylogenetically, three 16S rRNA gene sequence clusters of putative methanotrophic Verrucomicrobia were observed. Those detected in high-temperature geothermal samples (44.1-81.6°C) grouped with known thermoacidiphilic 'Methylacidiphilum' isolates. A second group dominated in moderate-temperature geothermal samples (22.5-40.1°C) and a representative mesophilic methanotroph from this group was isolated (strain LP2A). Genome sequencing verified that strain LP2A possessed particulate methane monooxygenase, but its 16S rRNA gene sequence identity to 'Methylacidiphilum infernorum' strain V4 was only 90.6%. A third group clustered distantly with known methanotrophic Verrucomicrobia. Using pmoA-gene targeted quantitative polymerase chain reaction, two geothermal soil profiles showed a dominance of LP2A-like pmoA sequences in the cooler surface layers and 'Methylacidiphilum'-like pmoA sequences in deeper, hotter layers. Based on these results, there appears to be a thermophilic group and a mesophilic group of methanotrophic Verrucomicrobia. However, both were detected only in acidic geothermal environments.


Subject(s)
Hot Springs/microbiology , Microbiota/genetics , Verrucomicrobia/genetics , Water Microbiology , Bacterial Proteins/genetics , Genes, Bacterial , Hydrogen-Ion Concentration , Methane/metabolism , Oxygenases/genetics , Phylogeny , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , Soil Microbiology , Verrucomicrobia/enzymology
SELECTION OF CITATIONS
SEARCH DETAIL
...