Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 24(13)2023 Jul 04.
Article in English | MEDLINE | ID: mdl-37446245

ABSTRACT

Considering the important cytoprotective and signaling roles but relatively narrow therapeutic index of hydrogen sulfide (H2S), advanced H2S donors are required to achieve a therapeutic effect. In this study, we proposed glutathione dithiophosphates as new combination donors of H2S and glutathione. The kinetics of H2S formation in dithiophosphate solutions suggested a continuous H2S release by the donors, which was higher for the dithiophosphate of reduced glutathione than oxidized glutathione. The compounds, unlike NaHS, inhibited the proliferation of C2C12 myoblasts at submillimolar concentrations due to an efficient increase in intracellular H2S. The H2S donors more profoundly affected reactive oxygen species and reduced glutathione levels in C2C12 myocytes, in which these parameters were elevated compared to myoblasts. Oxidized glutathione dithiophosphate as well as control donors exerted antioxidant action toward myocytes, whereas the effect of reduced glutathione dithiophosphate at (sub-)micromolar concentrations was rather modulating. This dithiophosphate showed an enhanced negative inotropic effect mediated by H2S upon contraction of the atrial myocardium, furthermore, its activity was prolonged and reluctant for washing. These findings identify glutathione dithiophosphates as redox-modulating H2S donors with long-acting profile, which are of interest for further pharmacological investigation.


Subject(s)
Hydrogen Sulfide , Glutathione Disulfide , Hydrogen Sulfide/pharmacology , Glutathione/metabolism , Antioxidants/pharmacology , Antioxidants/metabolism , Oxidation-Reduction
2.
Metabolites ; 11(6)2021 Jun 01.
Article in English | MEDLINE | ID: mdl-34205914

ABSTRACT

Hyperhomocysteinemia (HHcy) is associated with thrombosis, but the mechanistic links between them are not understood. We studied effects of homocysteine (Hcy) on clot contraction in vitro and in a rat model of HHcy. Incubation of blood with exogenous Hcy for 1 min enhanced clot contraction, while 15-min incubation led to a dose-dependent suppression of contraction. These effects were likely due to direct Hcy-induced platelet activation followed by exhaustion, as revealed by an increase in fibrinogen-binding capacity and P-selectin expression determined by flow cytometry. In the blood of rats with HHcy, clot contraction was enhanced at moderately elevated Hcy levels (10-50 µM), while at higher Hcy levels (>50 µM), the onset of clot contraction was delayed. HHcy was associated with thrombocytosis combined with a reduced erythrocyte count and hypofibrinogenemia. These data suggest that in HHcy, platelets get activated directly and indirectly, leading to enhanced clot contraction that is facilitated by the reduced content and resilience of fibrin and erythrocytes in the clot. The excessive platelet activation can lead to exhaustion and impaired contractility, which makes clots larger and more obstructive. In conclusion, HHcy modulates blood clot contraction, which may comprise an underappreciated pro- or antithrombotic mechanism.

3.
Behav Brain Res ; 409: 113324, 2021 07 09.
Article in English | MEDLINE | ID: mdl-33915239

ABSTRACT

Epidemiological data suggest that elevated homocysteine is associated with migraine with aura. However, how homocysteine contributes to migraine is still unclear. Here, we tested whether hyperhomocysteinemia (hHCY) promotes cortical spreading depression (CSD), a phenomenon underlying migraine with aura, and whether hHCY contributes to pain behavior. hHCY was induced by dietary methionine in female rats while the testing was performed on their 6-8week-old offspring. CSD and multiple unit activity (MUA) induced by KCl were recorded from the primary somatosensory cortex, S1, using multichannel electrodes. In hHCY rats, compared to control, we found: i) higher probability of CSD occurrence; ii) induction of CSD by lower concentrations of KCl; iii) faster horizontal propagation of CSD; iv) smaller CSD with longer duration; v) higher frequency of MUA at CSD onset along with slower reappearance. Rats with hHCY demonstrated high level of locomotor activity and grooming while spent less time in the central area of the open field, indicating anxiety. These animals showed light sensitivity and facial mechanical allodinia. Thus, hHCY acquired at birth promotes multiple features of migraine such as higher cortical excitability, mechanical allodynia, photophobia, and anxiety. Our results provide the first experimental explanation for the higher occurrence of migraine with aura in patients with hHCY.


Subject(s)
Anxiety/physiopathology , Behavior, Animal/physiology , Cortical Excitability/physiology , Cortical Spreading Depression/physiology , Hyperalgesia/physiopathology , Hyperhomocysteinemia/complications , Photophobia/physiopathology , Somatosensory Cortex/physiopathology , Animals , Anxiety/etiology , Cortical Spreading Depression/drug effects , Disease Models, Animal , Female , Hyperalgesia/etiology , Hyperhomocysteinemia/chemically induced , Male , Methionine/pharmacology , Migraine with Aura/etiology , Photophobia/etiology , Pregnancy , Prenatal Exposure Delayed Effects/chemically induced , Rats , Rats, Wistar
4.
Int J Dev Neurosci ; 75: 1-12, 2019 Jun.
Article in English | MEDLINE | ID: mdl-30946975

ABSTRACT

Enhanced levels of homocysteine during pregnancy induce oxidative stress and contribute to many age-related diseases. In this study, we analyzed age-dependent synaptic modifications in developing neuromuscular synapses of rats with prenatal hyperhomocysteinemia (hHCY). One of the main findings indicate that the intensity and the timing of transmitter release in synapses of neonatal (P6 and P10) hHCY rats acquired features of matured synaptic transmission of adult rats. The amplitude and frequency of miniature end-plate currents (MEPCs) and evoked transmitter release were higher in neonatal hHCY animals compared to the control group. Analysis of the kinetics of neurotransmitter release demonstrated more synchronized release in neonatal rats with hHCY. At the same time lower release probability was observed in adults with hHCY. Spontaneous transmitter release in neonates with hHCY was inhibited by hydrogen peroxide (H2O2) whereas in controls this oxidant was effective only in adult animals indicating a higher susceptibility of motor nerve terminals to oxidative stress. The morphology and the intensity of endocytosis of synaptic vesicles in motor nerve endings was assessed using the fluorescence dye FM 1-43. Adult-like synapses were found in neonates with hHCY which were characterized by a larger area of presynaptic terminals compared to controls. No difference in the intensity of FM 1-43 fluorescence was observed between two groups of animals. Prenatal hHCY resulted in reduced muscle strength assessed by the Paw Grip Endurance test. Using biochemical assays we found an increased level of H2O2 and lipid peroxidation products in the diaphragm muscles of hHCY rats. This was associated with a lowered activity of superoxide dismutase and glutathione peroxidase. Our data indicate that prenatal hHCY induces oxidative stress and apparent faster functional and morphological "maturation" of motor synapses. Our results uncover synaptic mechanisms of disrupted muscle function observed in hHCY conditions which may contribute to the pathogenesis of motor neuronal diseases associated with enhanced level of homocysteine.


Subject(s)
Hyperhomocysteinemia/metabolism , Muscle, Skeletal/metabolism , Neuromuscular Junction/physiology , Oxidative Stress/physiology , Prenatal Exposure Delayed Effects/metabolism , Synaptic Transmission/physiology , Animals , Female , Hydrogen Peroxide/pharmacology , Lipid Peroxidation/physiology , Motor Neurons/metabolism , Muscle Strength/physiology , Neuromuscular Junction/drug effects , Oxidants/pharmacology , Oxidative Stress/drug effects , Pregnancy , Rats , Rats, Wistar , Reactive Oxygen Species/metabolism , Synaptic Transmission/drug effects
5.
RSC Adv ; 9(69): 40553-40564, 2019 Dec 03.
Article in English | MEDLINE | ID: mdl-35542638

ABSTRACT

Here we overview the recent advances in the fabrication of sustainable composite nanomaterials with decontamination capacity towards inorganic and organic pollutants. In this regards, we present the development of hybrid systems based on clay nanoparticles with different shapes (such as kaolinite nanosheets and halloysite nanotubes) and organic molecules (biopolymers, surfactants, cucurbituril) as efficient removal agents for both aliphatic and aromatic hydrocarbons. Due to their high specific surface area, clay nanoparticles have been successfully employed as fillers for composite membranes with excellent filtration capacity. The preparation of composite gel beads based on biopolymers (alginate and pectin) and halloysite nanotubes has been discussed and their adsorption capacities towards both heavy metals and organic dyes have been highlighted. We describe the successful preparation of kaolinite/graphene composites as well as tubular inorganic micelles obtained by the select functionalization of the halloysite cavity with anionic surfactants. Finally, recent research on Pickering emulsions (for oil spill remediation) and bioremediation technologies has been discussed.

SELECTION OF CITATIONS
SEARCH DETAIL
...