Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Polymers (Basel) ; 16(7)2024 Apr 04.
Article in English | MEDLINE | ID: mdl-38611247

ABSTRACT

Currently, the application of solvent exchange-induced in situ gel is underway for drug delivery to the body target site. Nitrocellulose was attempted in this research as the matrix-forming agent in solvent exchange-induced in situ gel for acne and periodontitis treatments. The gel incorporated a combination of 1% w/w levofloxacin HCl and 2% w/w salicylic acid as the active compounds. In order to facilitate formulation development, the study explored the matrix-forming behavior of different concentrations of nitrocellulose in N-methyl pyrrolidone (NMP). Consequently, their physicochemical properties and matrix-forming behavior, as well as antimicrobial and anti-inflammatory activities, were evaluated using the agar cup diffusion method and thermal inhibition of protein denaturation in the egg albumin technique, respectively. All prepared formulations presented as clear solutions with Newtonian flow. Their contact angles on agarose gel were higher than on a glass slide due to matrix formation upon exposure to the aqueous phase of agarose, with an angle of less than 60° indicating good spreadability. Nitrocellulose concentrations exceeding 20% initiated stable opaque matrix formation upon contact with phosphate buffer pH 6.8. The high hardness and remaining force of the transformed gel indicated their robustness after solvent exchange. Fluorescence tracking using sodium fluorescein and Nile red confirmed the retardation of NMP and water diffusion by the nitrocellulose matrix. From the Franz cell permeation study, these drugs could permeate through neonate porcine skin and tissue of porcine buccal from the nitrocellulose in situ forming gel. Their accumulation in these tissues might enable the inhibition of the invading bacterial pathogens. The developed in situ gels effectively inhibited Staphylococcus aureus, Staphylococcus epidermidis, Propionibacterium acnes, and Porphyromonas gingivalis. Furthermore, the formulations demonstrated an anti-inflammatory effect. The low viscosity of LvSa25Nc makes it appropriate for injectable treatments targeting periodontitis, while the higher viscosity of LvSa40Nc renders it appropriate for topical applications in acne treatment. Therefore, the nitrocellulose in situ gel loaded with combined levofloxacin HCl and salicylic acid emerges as a promising dosage form for treating acne and periodontitis.

2.
AAPS PharmSciTech ; 25(5): 89, 2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38641711

ABSTRACT

Oral candidiasis is a fungal infection affecting the oral mucous membrane, and this research specifically addresses on a localized treatment through fluconazole-loaded ibuprofen in situ gel-based oral spray. The low solubility of ibuprofen is advantageous for forming a gel when exposed to an aqueous phase. The 1% w/w fluconazole-loaded in situ gel oral sprays were developed utilizing various concentrations of ibuprofen in N-methyl pyrrolidone. The prepared solutions underwent evaluation for viscosity, surface tension, contact angle, water tolerance, gel formation, interface interaction, drug permeation, and antimicrobial studies. The higher amount of ibuprofen reduced the surface tension and retarded solvent exchange. The use of 50% ibuprofen as a gelling agent demonstrated prolonged drug permeation for up to 24 h. The incorporation of Cremophor EL in the formulations resulted in increased drug permeation and exhibited effective inhibition against Candida albicans, Candida krusei, Candida lusitaniae, and Candida tropicalis. While the Cremophor EL-loaded formulation did not exhibit enhanced antifungal effects on agar media, its ability to facilitate the permeation of fluconazole and ibuprofen suggested potential efficacy in countering Candida invasion in the oral mucosa. Moreover, these formulations demonstrated significant thermal inhibition of protein denaturation in egg albumin, indicating anti-inflammatory properties. Consequently, the fluconazole-loaded ibuprofen in situ gel-based oral spray presents itself as a promising dosage form for oropharyngeal candidiasis treatment.


Subject(s)
Candidiasis, Oral , Fluconazole , Glycerol/analogs & derivatives , Fluconazole/pharmacology , Candidiasis, Oral/drug therapy , Candidiasis, Oral/microbiology , Oral Sprays , Ibuprofen/pharmacology , Antifungal Agents , Candida albicans , Microbial Sensitivity Tests
3.
Gels ; 9(9)2023 Sep 12.
Article in English | MEDLINE | ID: mdl-37754418

ABSTRACT

The aim of this study was to prepare and characterize the imatinib mesylate (IM)-loaded gamboge-based ISG system for local administration of an anticancer agent against colorectal carcinoma. The ISG formulations were prepared in dimethyl sulfoxide (DMSO) and N-methyl-2-pyrrolidone (NMP). The physicochemical properties, drug release profile, and cytotoxicity of the developed formulations were assessed. The developed ISG demonstrated Newtonian flow behavior with acceptable rheological and mechanical properties. The viscosity of the developed ISG, measured at less than 80 cP, and the applied forces of less than 50 N·mm, indicated easy administration using clinical injection techniques. Upon contact with an aqueous phase, the ISG immediately formed a porous cross-sectional structure, enabling sustained release of IM over 14 days. The release profile of IM was fitted to the quasi-Fickian diffusion mechanism, and the release rate could be controlled by the types of solvent and the amount of IM content. The developed IM-loaded gamboge ISG effectively inhibited colorectal cancer cells, including HCT116 and HT29 cell lines, with less than 20% cell viability observed at a concentration of 1% w/w IM after 2 days of incubation. This suggests that the developed ISG may potentially serve as an injectable system for localized anticancer delivery against colorectal cells, potentially reducing the side effects of systemic chemotherapy and improving patient adherence.

4.
Gels ; 8(9)2022 Aug 23.
Article in English | MEDLINE | ID: mdl-36135239

ABSTRACT

Localized delivery systems have been typically designed to enhance drug concentration at a target site and minimize systemic drug toxicity. A rosin/cinnamon oil (CO) in situ forming gel (ISG) was developed for the sustainable delivery of imatinib mesylate (IM) against colorectal cancer cells. CO has been claimed to express a potent anticancer effect against various cancer cells, as well as a synergistic effect with IM on colorectal cancer cells; however, poor aqueous solubility limits its application. The effect of rosin with the adding CO was assessed on physicochemical properties and in vitro drug release from developed IM-loaded rosin/CO-based ISG. Moreover, in vitro cytotoxicity tests were conducted against two colorectal cancer cells. All formulations exhibited Newtonian flow behavior with viscosity less than 266.9 cP with easier injectability. The adding of CO decreased the hardness and increased the adhesive force of the obtained rosin gel. The gel formation increased over time under microscopic observation. CO-added ISG had a particle-like gel appearance, and it promoted a higher release of IM over a period of 28 days. All tested ISG formulations revealed cytotoxicity against HCT-116 and HT-29 cell lines at different incubation times. Thus, CO-loaded rosin-based ISG can act as a potentially sustainable IM delivery system for chemotherapy against colorectal cancer cells.

5.
Gels ; 8(3)2022 Mar 08.
Article in English | MEDLINE | ID: mdl-35323282

ABSTRACT

Localized intra-periodontal pocket drug delivery using an injectable in situ forming gel is an effective periodontitis treatment. The aqueous insoluble property of rosin is suitable for preparing a solvent exchange-induced in situ forming gel. This study aims to investigate the role of incorporating lime peel oil (LO) on the physicochemical properties of injectable in situ forming gels based on rosin loaded with 5% w/w doxycycline hyclate (DH) in dimethyl sulfoxide (DMSO) and N-methyl pyrrolidone (NMP). Their gel formation, viscosity, injectability, mechanical properties, wettability, drug release, and antimicrobial activities were evaluated. The presence of LO slowed gel formation due to the loose precipitate formation of gel with a high LO content. The viscosity and injectability were slightly increased with higher LO content for the DH-loaded rosin-based in situ forming gel. The addition of 10% LO lowered gel hardness with higher adhesion. LO incorporation promoted a higher drug release pattern than the no oil-added formulation over 10 days and the gel formation rate related to burst drug release. The drug release kinetics followed the non-Fickian diffusion mechanism for oil-added formulations. LO exhibited high antimicrobial activity against Porphyromonas gingivalis and Staphylococcus aureus. The DH-loaded rosin in situ forming gel with an addition of LO (0, 2.5, 5, and 10% w/w) inhibited all tested microorganisms. Adding 10% LO to rosin-based in situ forming gel improved the antimicrobial activities, especially for the P. gingivalis and S. aureus. As a result, the study demonstrates the possibility of using an LO amount of less than 10% loading into a rosin-based in situ forming gel for efficient periodontitis treatment.

6.
Toxicon ; 151: 163-168, 2018 Sep 01.
Article in English | MEDLINE | ID: mdl-30017790

ABSTRACT

Snakebite envenoming is a serious problem in Myanmar. The great majority of snakebite in this country is due to Russell's Viper (Daboia siamensis). For many years, the Burma Pharmaceutical Industry has produced a monovalent antivenom to Russell's Viper in horses. At present, the only way of determining the level of antibody against D. siamensis venom in hyperimmune horse serum is to perform venom neutralisation tests in mice. In this study, we describe the development of an in vitro ELISA assay to estimate neutralising capacity of horse serum. We found a strong correlation between the ELISA assay and the venom neutralisation test in mice (r = 0.982). The assay is robust and has sufficient sensitivity (92%) and specificity (96%) to replace the venom neutralisation test in mice during the immunisation phase in horses.


Subject(s)
Antibodies , Antivenins/immunology , Daboia , Enzyme-Linked Immunosorbent Assay/methods , Immunization , Viper Venoms/immunology , Animals , Horses
SELECTION OF CITATIONS
SEARCH DETAIL
...