Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 13(1): 20122, 2023 11 17.
Article in English | MEDLINE | ID: mdl-37978327

ABSTRACT

The use of unmanned aerial vehicles (UAVs) has facilitated crop canopy monitoring, enabling yield prediction by integrating regression models. However, the application of UAV-based data to individual-level harvest weight prediction is limited by the effectiveness of obtaining individual features. In this study, we propose a method that automatically detects and extracts multitemporal individual plant features derived from UAV-based data to predict harvest weight. We acquired data from an experimental field sown with 1196 Chinese cabbage plants, using two cameras (RGB and multi-spectral) mounted on UAVs. First, we used three RGB orthomosaic images and an object detection algorithm to detect more than 95% of the individual plants. Next, we used feature selection methods and five different multi-temporal resolutions to predict individual plant weights, achieving a coefficient of determination (R2) of 0.86 and a root mean square error (RMSE) of 436 g/plant. Furthermore, we achieved predictions with an R2 greater than 0.72 and an RMSE less than 560 g/plant up to 53 days prior to harvest. These results demonstrate the feasibility of accurately predicting individual Chinese cabbage harvest weight using UAV-based data and the efficacy of utilizing multi-temporal features to predict plant weight more than one month prior to harvest.

SELECTION OF CITATIONS
SEARCH DETAIL
...