Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Parasitol Res ; 118(3): 725-732, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30671729

ABSTRACT

The Asian malaria mosquito, Anopheles stephensi, is a well-known and important vector of Plasmodium falciparum and P. vivax. Until 2013, its geographical distribution was confined to central and southern Asia including the Arabian Peninsula. In the Horn of Africa (HoA) Region, An. stephensi was first recorded from Djibouti in 2012, when it was linked geographically and temporally with an unusual outbreak of urban P. falciparum malaria. In 2016, An. stephensi was detected in the neighbouring Somali Region of Ethiopia. In order to determine whether An. stephensi populations have become established in Djibouti and contributed to the unusual rise in local malaria cases there, we carried out continuous vector surveillance from January 2013 to December 2017, investigated seasonal changes in An. stephensi population densities and bionomics, analysed available literature describing malaria in Djibouti since 2013, and investigated whether An. stephensi may have contributed to local malaria transmission by detecting circumsporozoite antigen of P. falciparum and P. vivax in female anophelines. From 2013 to 2016, seasonal activity of An. stephensi in urban Djibouti City primarily occurred during the colder, wetter season between September and May, with either no or rare trap catches from June to August. Unlike past years, this species was detected year-round, including the extremely hot summer months of June to August 2017. This change in seasonal occurrence may indicate that An. stephensi populations are adapting to their new environment in sub-Saharan Africa, facilitating their spread within Djibouti City. Among the 96 female An. stephensi investigated for malaria infectivity, three (3.1%) were positive for P. falciparum circumsporozoite antigen, including one P. falciparum/P. vivax VK 210 double infection. Subsequent to the unusual resurgence of local malaria in 2013, with 1684 confirmed cased reported for that year, malaria case numbers increased continuously, peaking at 14,810 in 2017. Prior to 2016, only P. falciparum malaria cases had been reported, but in 2016, autochthonously acquired P. vivax malaria cases occurred for the first time at a rate of 16.7% among all malaria cases recorded that year. This number increased to 36.7% in 2017. Our data indicate that the dynamics of malaria species in Djibouti is currently changing rapidly, and that An. stephensi can be involved in the transmission of both P. falciparum and P. vivax, simultaneously. Considering the extremely high potential impact of urban malaria on public health, the timely deployment of optimal multinational vector surveillance and control programs against An. stephensi is strongly recommended, not only for the HoA Region, but for the entire African continent.


Subject(s)
Anopheles/parasitology , Malaria/transmission , Mosquito Vectors/parasitology , Plasmodium falciparum/physiology , Plasmodium vivax/physiology , Animals , Disease Outbreaks , Djibouti/epidemiology , Epidemiological Monitoring , Female , Humans , Introduced Species , Malaria/epidemiology , Malaria/parasitology , Malaria, Falciparum/epidemiology , Malaria, Falciparum/parasitology , Malaria, Falciparum/transmission , Malaria, Vivax/epidemiology , Malaria, Vivax/parasitology , Malaria, Vivax/transmission , Population Density , Seasons
2.
Acta Trop ; 139: 39-43, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25004439

ABSTRACT

Anopheles stephensi is an important vector of urban malaria in India and the Persian Gulf area. Its previously known geographical range includes southern Asia and the Arab Peninsula. For the first time, we report A. stephensi from the African continent, based on collections made in Djibouti, on the Horn of Africa, where this species' occurrence was linked to an unusual urban outbreak of Plasmodium falciparum malaria, with 1228 cases reported from February to May 2013, and a second, more severe epidemic that emerged in November 2013 and resulted in 2017 reported malaria cases between January and February 2014. Anopheles stephensi was initially identified using morphological identification keys, followed by sequencing of the Barcode cytochrome c-oxidase I (COI) gene and the rDNA second internal transcribed spacer (ITS2). Positive tests for P. falciparum circumsporozoite antigen in two of six female A. stephensi trapped in homes of malaria patients in March 2013 are evidence that autochthonous urban malaria transmission by A. stephensi has occurred. Concurrent with the second malaria outbreak, P. falciparum-positive A. stephensi females were detected in Djibouti City starting in November 2013. In sub-Saharan Africa, newly present A. stephensi may pose a significant future health threat because of this species' high susceptibility to P. falciparum infection and its tolerance of urban habitats. This may lead to increased malaria outbreaks in African cities. Rapid interruption of the urban malaria transmission cycle, based on integrated vector surveillance and control programs aimed at the complete eradication of A. stephensi from the African continent, is strongly recommended.


Subject(s)
Anopheles/classification , Malaria/epidemiology , Animals , Anopheles/parasitology , DNA, Ribosomal/genetics , Disease Outbreaks , Djibouti , Female , Humans , Insect Vectors/classification , Insect Vectors/parasitology , Male
3.
Am J Trop Med Hyg ; 85(3): 554-9, 2011 Sep.
Article in English | MEDLINE | ID: mdl-21896822

ABSTRACT

Historically, native populations in the Republic of Djibouti have experienced only low and unstable malaria transmission and intermittent epidemics. In recent years, efforts at malaria control have been aggressively pursued. This study was performed to inform revised malaria prevention recommendations for military service members and international travelers to the country. Laboratory-confirmed cases of malaria documented at large medical facilities and within military and civilian health care systems in the Republic of Djibouti from 1998 to 2009 were reviewed. In recent years, fewer than 5% of febrile cases among the three largest passive surveillance systems were laboratory-confirmed as malaria, and incidence of confirmed malaria was well below 1/1,000 persons/year. As efforts in the Republic of Djibouti progress toward elimination, and in conjunction with continued efforts at surveillance, emphasizing mosquito-avoidance measures and standby emergency treatment will become reasonable recommendations for malaria prevention.


Subject(s)
Antimalarials/therapeutic use , Malaria/epidemiology , Djibouti/epidemiology , France , Humans , Malaria/drug therapy , Military Personnel , Population Surveillance , United States
SELECTION OF CITATIONS
SEARCH DETAIL
...