Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
iScience ; 27(2): 108827, 2024 Feb 16.
Article in English | MEDLINE | ID: mdl-38303692

ABSTRACT

The clinical success of implants depends on rapid osseointegration, and new materials are being developed considering the increasing demand. Considering cobalt (Co) antibacterial characteristics, we developed Co-deposited titanium (Ti) using direct current (DC) sputtering and investigated it as a new material for implant dentistry. The material was characterized using atomic absorption spectroscopy, scanning electron microscopy-energy dispersive X-ray spectroscopy, and X-ray photoelectron spectroscopy. The material's surface topography, roughness, surface wettability, and hardness were also analyzed. The Co thin film (Ti-Co15) showed excellent antibacterial effects against microbes implicated in peri-implantitis. Furthermore, Ti-Co15 was compatible and favored the attachment and spreading of MG-63 cells. The alkaline phosphatase and calcium mineralization activities of MG-63 cells cultured on Ti-Co15 remained unaltered compared to Ti. These data correlated well with the time-dependent expression of ALP, RUNX-2, and BMP-2 genes involved in osteogenesis. The results demonstrate that Co-deposited Ti could be a promising material in implant dentistry.

2.
Microb Pathog ; 186: 106462, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38030019

ABSTRACT

To treat the systemic infections caused by Candida albicans (C. albicans), various drugs have been used, however, infections still persisted due to virulence factors and increasing antifungal resistance. As a solution to this problem, we synthesized selenium nanoparticles (SeNPs) by using Bacillus cereus bacteria. This is the first study to report a higher (70 %) reduction of selenite ions into SeNPs in under 6 h. The as-synthesized, biogenic SeNPs were used to deliver bioactive constituents of aqueous extract of ginger for inhibiting the growth and biofilm (virulence factors) in C. albicans. UV-visible spectroscopy revealed a characteristic absorption at 280 nm, and Raman spectroscopy showed a characteristic peak shift at 253 cm-1 for the biogenic SeNPs. The synthesized SeNPs are spherical with 240-250 nm in size as determined by electron microscopy. Fourier transform infrared spectroscopy confirmed the functionalization of antifungal constituents of ginger over the SeNPs (formation of Ginger@SeNPs nanoconjugates). In contrast to biogenic SeNPs, nanoconjugates were active against C. albicans for inhibiting growth and biofilm formation. In order to reveal antifungal mechanism of nanoconjugates', real-time polymerase chain reaction (RT-PCR) analysis was performed, according to RT-PCR analysis, the nanoconjugates target virulence genes involved in C. albicans hyphae and biofilm formation. Nanoconjugates inhibited 25 % growth of human embryonic kidney (HEK) 293 cell line, indicating moderate cytotoxicity of active nanoconjugates in an in-vitro cytotoxicity study. Therefore, biogenic SeNPs conjugated with ginger dietary extract may be a potential antifungal agent and drug carrier for inhibiting C. albicans growth and biofilm formation.


Subject(s)
Bacillus , Nanoparticles , Selenium , Zingiber officinale , Humans , Selenium/chemistry , Antifungal Agents/pharmacology , Antifungal Agents/metabolism , Candida albicans/metabolism , Virulence Factors , Nanoconjugates , HEK293 Cells , Nanoparticles/chemistry , Bacillus/metabolism , Biofilms
SELECTION OF CITATIONS
SEARCH DETAIL
...