Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
ACS Omega ; 9(11): 13306-13322, 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38524413

ABSTRACT

Citrus hystrix leaves have been used traditionally as a spice, a traditional medicine for respiratory and digestive disorders, and a remedy for bacterial infections. This study reports on the synthesis of composite hydrogels using the freeze-thaw method with poly(vinyl alcohol) (PVA) as the building block loaded by C. hystrix leaf extract (CHLE). Additionally, chitosan (CS) and sodium alginate (SA) were also loaded, respectively, to increase the antibacterial activity and to control the extract release of the composite hydrogels. The combinations of the compositions were PVA, PVA/CHLE, PVA/CHLE/CS, PVA/CHLE/SA, and PVA/CHLE/SA/CS. The internal morphology of the hydrogels shows some changes after the PVA/CHLE hydrogel was loaded by CS, SA, and SA/CS. The analysis of the Fourier transform infrared (FTIR) spectra confirmed the presence of PVA, CHLE, CS, and SA in the composite hydrogels. From the X-ray diffraction (XRD) characterization, it was shown that the composite hydrogels maintained their semicrystalline properties with decreasing crystallinity degree after being loaded by CS, SA, and SA/CS, as also supported by differential scanning calorimetry (DSC) characterization. The compressive strength of the PVA/CHLE hydrogel decreases after the loading of CS, SA, and SA/CS, so that it becomes more elastic. Despite being loaded in the composite hydrogels, the CHLE retained its antibacterial activity, as evidenced in the in vitro antibacterial test. The loading of CS succeeded in increasing the antibacterial activity of the composite hydrogels, while the loading of SA resulted in the decrease of the antibacterial activity. The release of extract from the composite hydrogels was successfully slowed down after the loading of CS, SA, and SA/CS, resulting in a controlled release following the pseudo-Fickian diffusion. The cytotoxic activity test proved that all hydrogel samples can be used safely on normal cells up to concentrations above 1000 µg/mL.

2.
ACS Omega ; 8(26): 23664-23672, 2023 Jul 04.
Article in English | MEDLINE | ID: mdl-37426264

ABSTRACT

Nanofiber membranes were successfully synthesized from expanded polystyrene (EPS) waste with the addition of poly(vinylpyrrolidone) (PVP) for water microfiltration using the electrospinning method. The EPS-based nanofiber membranes exhibited a smooth morphology and were uniform in size. The concentration of the EPS/PVP solution changed some of the physical parameters of the nanofiber membrane, such as viscosity, conductivity, and surface tension. Greater viscosity and surface tension increase the nanofiber membrane diameter, whereas the addition of PVP results in hydrophilicity. Additionally, increasing the pressure increased the flux value of each variation of the nanofiber membranes. Furthermore, the rejection value was 99.99% for all variations. Finally, the use of EPS waste for nanofiber membranes is also beneficial for decreasing the amount of EPS waste in the environment and is an alternative to the current membranes available in the market for water filtration applications.

3.
Int J Biol Macromol ; 248: 125888, 2023 Sep 01.
Article in English | MEDLINE | ID: mdl-37473898

ABSTRACT

Konjac glucomannan (KGM), a dietary fiber hydrocolloid polysaccharide isolated from Amorphophallus konjac tubers, has potential applications in various fields. However, the use of KGM-based hydrogels has mainly focused on the food, biomedical, and water treatment industries. KGM possesses several health benefits and could be a promising candidate for use in edible electronics. This paper presents the first review of KGM-based hydrogels as edible electronics and their potential health benefits. The paper initially focuses on the health-promoting effects of KGM-based hydrogels, such as prebiotic effects, antiobesity, antioxidant, and antibacterial properties. Then, it discusses the feasible design strategies for KGM-based hydrogels as edible electronics, considering their flexibility, mechanical properties, response to stimuli, degradability aspects, their role as electronic device components, and the retention period of the devices. Finally, this review outlines future directions for developing KGM-based hydrogels for use in edible electronics.


Subject(s)
Amorphophallus , Hydrogels , Hydrogels/pharmacology , Mannans/pharmacology , Polysaccharides , Prebiotics
4.
Biomed Mater Devices ; : 1-24, 2023 May 10.
Article in English | MEDLINE | ID: mdl-37363141

ABSTRACT

In December 2019, an outbreak of unknown pneumonia emerged in Wuhan City, Hubei Province, China. It was later identified as the SARS-CoV-2 virus and has since infected over 9 million people in more than 213 countries worldwide. Massive papers on the topic of SARS-CoV-2 that have already been published are necessary to be analyzed and discussed. This paper used the combination of systematic literature network analysis and content analysis to develop a comprehensive discussion related to the use of nanotechnology and materials in environmental and human protection. Its is shown that various efforts have been made to control the transmission of this pandemic. Nanotechnology plays a crucial role in modern vaccine design, as nanomaterials are essential tools for antigen delivery, adjuvants, and mimics of viral structures. In addition, nanomaterials and nanotechnology also reported a crucial role in environmental protection for defence and treating the pandemic. To eradicate pandemics now and in the future, successful treatments must enable rapid discovery, scalable manufacturing, and global distribution. In this review, we discuss the current approaches to COVID-19 development and highlight the critical role of nanotechnology and nanomaterials in combating the virus in the human body and the environment.

5.
ACS Omega ; 8(14): 13342-13351, 2023 Apr 11.
Article in English | MEDLINE | ID: mdl-37065082

ABSTRACT

This study describes a sensor based on quartz crystal microbalance (QCM) coated by polyacrylonitrile (PAN) nanofibers containing nickel nanoparticles for methanol gas detection. The PAN/nickel nanofibers composites were made via electrospinning and electrospray methods. The QCM sensors coated with the PAN/nickel nanofiber composite were evaluated for their sensitivities, selectivities, and stabilities. The morphologies and elemental compositions of the sensors were examined using a scanning electron microscope-energy dispersive X-ray. A Fourier Transform Infrared spectrometer was used to investigate the elemental bonds within the nanofiber composites. The QCM sensors coated with PAN/nickel nanofibers offered a high specific surface area to enhance the QCM sensing performance. They exhibited excellent sensing characteristics, including a high sensitivity of 389.8 ± 3.8 Hz/SCCM, response and recovery times of 288 and 251 s, respectively, high selectivity for methanol compared to other gases, a limit of detection (LOD) of about 1.347 SCCM, and good long-term stability. The mechanism of methanol gas adsorption by the PAN/nickel nanofibers can be attributed to intermolecular interactions, such as the Lewis acid-base reaction by PAN nanofibers and hydrogen bonding by nickel nanoparticles. The results suggest that QCM-coated PAN/nickel nanofiber composites show great potential for the design of highly sensitive and selective methanol gas sensors.

6.
Insect Sci ; 30(6): 1827-1830, 2023 Dec.
Article in English | MEDLINE | ID: mdl-36992653

ABSTRACT

From a physics perspective, paper wasps arrange larval systems in specific formations to attain mechanical stability for the nest. The closer the distance between the center of mass of the larval system (CML) and the center of mass of the nest (CMN), the lower the moment of force generated by the larval system, resulting in a more stable nest.


Subject(s)
Wasps , Animals , Larva , Nesting Behavior
7.
ACS Omega ; 8(3): 2915-2930, 2023 Jan 24.
Article in English | MEDLINE | ID: mdl-36713706

ABSTRACT

Andrographolide (AG) is one of the compounds in Andrographis paniculata, which has a high antibacterial activity. This paper reports the freeze-thaw method's use to synthesize polyvinyl alcohol (PVA) hydrogels loaded with AG and its characterization. From the morphological examination, the porosity of the PVA/AG hydrogel was found to increase with the increasing AG concentration. The swelling degree test revealed that the hydrogels' maximum swelling degrees were generally greater than 100%. The composite hydrogel with the highest fraction of andrographolide (PAG-4) showed greater weight loss than the hydrogel without AG (PAG-0). The molecular interaction between PVA and AG resulted in the narrowing of the band attributed to the O-H and C=O stretching bonds and the emergence of an amorphous domain in the composite hydrogels. The loading of AG disrupted the formation of hydroxyl groups in PVA and interrupted the cross-linking between PVA chains, which lead to the decrease of the compression strength and the crystallinity increased with increasing AG. The antibacterial activity of the composite hydrogel increased with increasing AG. The PAG-4 hydrogel had the highest antibacterial activity of 37.9 ± 4.6b %. Therefore, the PVA/AG hydrogel has the potential to be used as an antibacterial device.

8.
RSC Adv ; 12(52): 33751-33760, 2022 Nov 22.
Article in English | MEDLINE | ID: mdl-36505690

ABSTRACT

Acrylonitrile butadiene styrene (ABS) is one of the most common fused-filament feedstocks for 3D printing. The rapid growth of the 3D printing industry has resulted in huge demand for ABS filaments; however, it generates a large amount of waste. This study developed a novel method using waste ABS to fabricate electrospun nanofiber membranes (ENMs) for water filtration. Polyvinylpyrrolidone (PVP) was employed to modify the properties of waste ABS, and the effect of PVP addition in the range of 0-5 wt% was investigated. The results showed that adding PVP increased the viscosity and surface tension but decreased the conductivity of the precursor solution. After electrospinning, PVP could reduce the number of beads, increase the porosity and fiber diameter, and improve the wettability of the fabricated fibers. Moreover, the bilayer of ABS ENMs achieved a high flux value between 2951 and 48 041 L m-2 h-1 and a high rejection rate of 99%. Our study demonstrates a sustainable strategy to convert waste plastics to inexpensive materials for wastewater treatment membranes.

9.
RSC Adv ; 11(48): 30156-30171, 2021 Sep 06.
Article in English | MEDLINE | ID: mdl-35480264

ABSTRACT

A polyvinyl alcohol (PVA) hydrogel loaded with guava leaf extract (GLE) has potential applications as a wound dressing with good antibacterial activity. This study succeeded in fabricating a PVA hydrogel containing GLE using the freeze-thaw (FT) method. By varying the GLE concentration, we can adjust the physical properties of the hydrogel. The addition of GLE results in a decrease in cross-linking during gelation and an increase in the pore size of the hydrogels. The increase of the pore size made the swelling increase and the mechanical strength decrease. The weight loss of the hydrogel also increases because the phosphate buffer saline (PBS) dissolves the GLE. Increasing the GLE concentration caused the Fourier-transform infrared (FTIR) absorbance peaks to widen due to hydrogen bonds formed during the FT process. The crystalline phase was transformed into an amorphous phase in the PVA/GLE hydrogel based on the X-ray diffraction (XRD) spectra. The differential scanning calorimetry (DSC) characterization showed a significant decrease in the hydrogel weight over temperatures of 30-150 °C due to the evaporation of water from the hydrogel matrix. The zone of inhibition of the PVA/GLE hydrogel increased with antibacterial activity against Staphylococcus aureus of 17.93% per gram and 15.79% per gram against Pseudomonas aeruginosa.

10.
Int J Nanomedicine ; 15: 8829-8843, 2020.
Article in English | MEDLINE | ID: mdl-33304099

ABSTRACT

BACKGROUND AND AIM: An antimicrobial delivery in the form of surface-modified lectin of lipid nanoparticles was proposed to improve cellular accumulation. ArtinM, an active toll-like receptor 2 (TLR2) agonist lectin isolated from cempedak (Arthocarpus integrifolia) seeds, was selected to induce cellular engulfment of nanoparticles within infected host cells. MATERIALS AND METHODS: Lipid nanoparticles were prepared using the emulsification technique before electrostatic adsorption of artinM. The formula comprising of rifampicin, soy phospholipid, and polysorbate 80 was optimized by Box-Behnken design to produce the desired particle size, entrapment efficiency, and drug loading. The optimum formula was characterized for morphology, in vitro release, and cellular transport. RESULTS AND DISCUSSION: Soy phospholipid showed a profound effect on controlling drug loading and entrapment efficiency. Owing to its surface activity, polysorbate 80 contributed significantly to reduce particle size; however, a higher ratio to lipid concentration resulted in a decrease of rifampicin encapsulation. The adsorption of artinM on the surface of nanoparticles was accomplished by electrostatic binding at pH 4, where this process maintained the stability of encapsulated rifampicin. A high proportion of artinM adsorbed on the surface of the nanoparticles shown by haemagglutination assay, zeta potential measurement, and transmission electron microscopy imaging. Cellular uptake revealed by confocal microscopy showed the success in transporting Nile-red labelled nanoparticles across fibroblast cells. CONCLUSION: The delivery system of nanoparticles bearing artinM becomes a potential platform technology for antibiotic targeting in the treatment of life-threatening chronic diseases caused by intracellular infections.


Subject(s)
Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/metabolism , Drug Carriers/chemistry , Intracellular Space/drug effects , Lectins/chemistry , Nanoparticles/chemistry , Phospholipids/chemistry , Anti-Bacterial Agents/pharmacology , Biological Transport , Intracellular Space/microbiology , Particle Size , Polysorbates/chemistry
11.
Int J Nanomedicine ; 15: 6433-6449, 2020.
Article in English | MEDLINE | ID: mdl-32922010

ABSTRACT

BACKGROUND: Electrospun nanofibers based on Colocasia esculenta tuber (CET) protein are considered as a promising material for wound dressing applications. However, the use of these nanofibers in aqueous conditions has poor stability. The present study was performed to obtain insights into the crosslinked electrospun CET's protein-chitosan (CS)-poly(ethylene oxide) (PEO) nanofibers and to evaluate their potential for wound dressing applications. METHODS: The electrospun nanofibers were crosslinked with glutaraldehyde (GA) vapor and heat treatment (HT) to enhance their physicochemical stability. The crosslinked nanofibers were characterized by protein profiles, morphology structures, thermal behavior, mechanical properties, and degradation behavior. Furthermore, the antibacterial properties and cytocompatibility were analyzed by antibacterial assessment and cell proliferation. RESULTS: The protein profiles of the electrospun CET's protein-CS-PEO nanofibers before and after HT crosslinking contained one major bioactive protein with a molecular weight of 14.4 kDa. Scanning electron microscopy images of the crosslinked nanofibers indicated preservation of the structure after immersion in phosphate buffered saline. The crosslinked nanofibers resulted in higher ultimate tensile strength and lower ultimate strain compared to the non-crosslinked nanofibers. GA vapor crosslinking showed higher water stability compared to HT crosslinking. The in vitro antibacterial activity of the crosslinked nanofibers showed a stronger bacteriostatic effect on Staphylococcus aureus than on Escherichia coli. Human skin fibroblast cell proliferation on crosslinked GA vapor and HT nanofibers with 1% (w/v) CS and 2% (w/v) CET's protein demonstrated the highest among all the other crosslinked nanofibers after seven days of cell culture. Cell proliferation and cell morphology results revealed that introducing higher CET's protein concentration on crosslinked nanofibers could increase cell proliferation of the crosslinked nanofibers. CONCLUSION: These results are promising for the potential use of the crosslinked electrospun CET's protein-CS-PEO nanofibers as bioactive wound dressing materials.


Subject(s)
Anti-Bacterial Agents/pharmacology , Chitosan/chemistry , Colocasia/chemistry , Cross-Linking Reagents/chemistry , Nanofibers/chemistry , Plant Proteins/chemistry , Plant Tubers/chemistry , Polyethylene Glycols/chemistry , Animals , Cell Proliferation/drug effects , Cell Shape/drug effects , Escherichia coli/drug effects , Humans , Mice , Microbial Sensitivity Tests , NIH 3T3 Cells , Nanofibers/ultrastructure , Plant Proteins/ultrastructure , Staphylococcus aureus/drug effects , Stress, Mechanical , Temperature
12.
RSC Adv ; 10(29): 17205-17216, 2020 Apr 29.
Article in English | MEDLINE | ID: mdl-35521466

ABSTRACT

A bilayer structure of a nylon 6 nanofibrous membrane on a cellulose membrane has been successfully developed for water filter application. The nylon 6 nanofibrous membrane was deposited on the cellulose membrane via the electrospinning technique. The bilayer membrane properties, including mechanical strength, wettability, porosity, and microfiltration performance (flux and rejection), were thoroughly investigated. The membrane properties were studied using nylon 6 nanofibrous membranes having various fiber diameters and membrane thicknesses, which were obtained by adjusting the solution concentration and spinning time. The measurement of solution parameters, i.e., viscosity, conductivity, and surface tension, showed a strong relationship between the solution concentration and these parameters, which later changed the fabricated fiber sizes. The FTIR spectra depicted complete solvent evaporation after the electrospinning process. Smaller nanofiber diameters could improve the mechanical strength of the membranes. The porosity test showed a strong relationship between the nanofiber diameter and the pore size and pore distribution of the membranes. The water contact angle measurement showed the significant influence of the cellulose membrane on increasing the hydrophilicity of the bilayer structure, which then improved the membrane flux. The particle rejection test, using PSL sizes of 308 and 450 nm, showed high rejection (above 98%) for all sample thickness variations. Overall, the bilayer structure of the nylon 6 nanofibers/cellulose membranes showed excellent and promising performance as water filter media.

13.
Waste Manag ; 103: 76-86, 2020 Feb 15.
Article in English | MEDLINE | ID: mdl-31865038

ABSTRACT

This paper reported on the fabrication of nanofibrous membranes from various sources of expanded polystyrene (EPS) waste using electrospinning technique and their application as air filter media. The filter membranes were made from four EPS waste sources, i.e. food packaging, EPS craft, instant noodle cup, and electronic packaging. The properties of the membranes fabricated from those sources were compared to obtain the best EPS waste source for air filter application. To make the precursor solutions, those samples were dissolved in d-limonene:DMF with the concentration of 15, 20, and 25 wt%. The solid EPS density, solution viscosity, and surface tension were measured. The fiber diameter and morphology of nanofibers were characterized by scanning electron microscopy (SEM) for each EPS variation. The fabricated membrane properties (crystallinity, wettability, and mechanical strength) and filtration properties (pressure drop, PM2.5 filtration efficiency, and quality factor) were fully characterized and analyzed. Homogeneous fiber diameter with various morphologies (beaded, wrinkled, and smooth fiber) were obtained from all samples with hydrophobic to super-hydrophobic surface (water contact angle ranging from 106 to 153°). Also, the EPS solid density affected the solution viscosity with the expression of η = 0.132 ρ0.29, which then affected the fabricated membrane packing density, porosity, and mechanical properties. Overall, the experimental results showed that all EPS nanofiber filters had great potential as an air filter media. The EPS filter made from food packaging waste with the solution concentration of 15 wt% exhibited the highest efficiency and quality factor of 99.99% and 0.15 Pa-1, respectively.


Subject(s)
Air Filters , Nanofibers , Filtration , Polystyrenes , Porosity
14.
Nanotechnology ; 30(42): 425602, 2019 Oct 18.
Article in English | MEDLINE | ID: mdl-31261143

ABSTRACT

This paper reports on the recycling of expanded polystyrene (EPS) waste to be repurposed as EPS nanofibrous mats for air filtration applications. The EPS nanofibrous mats were prepared via electrospinning technique. The EPS solutions for producing the mats were made by dissolving the EPS waste in dimethylformamide (DMF) and d-limonene solvents. The mixing ratio of DMF and d-limonene solvents were varied to obtain EPS solutions with different surface tension and viscosity. As a result, different fiber morphology (smooth fiber, wrinkled fiber, and beaded fiber) and diameter ranging from 314 nm to 3506 nm were obtained. The synthesized EPS nanofibrous mats were characterized by scanning electron microscope, Fourier-transform infrared spectroscopy, x-ray diffraction spectroscopy, differential scanning calorimetry, mechanical strength, porosity, and water contact angle measurement apparatus. The mechanical strength measurement exhibited that the beaded fiber had the highest tensile strength and the lowest elasticity compared to wrinkled and smooth fiber. The water contact angle measurement showed that the EPS nanofibrous mats were classified as ultra-hydrophobic, which was a good criterion for air filter media. Some filtration parameters of the EPS nanofibrous mats were measured, including particle collecting efficiency, pressured drop, and quality factor. The particle collecting efficiency of each EPS nanofibrous mats was measured using monodisperse polystyrene latex (PSL) particles and PM2.5 from burning incense as the test particles. The EPS nanofibrous mats had a high collecting efficiency (up to 99.99%) and had a low pressure drop (below 70 Pa) for the face velocity of 5.4 cm s-1. The quality factor of the EPS nanofibrous mats reached 0.10 for PSL filtration and 0.16 for PM2.5 filtration. Overall, the EPS nanofibrous mats with controlled morphology were suitable to be used as air filtration media with high mechanical strength, ultra-hydrophobic surface, and high quality factor.

15.
RSC Adv ; 9(53): 30741-30751, 2019 Sep 26.
Article in English | MEDLINE | ID: mdl-35529399

ABSTRACT

Acrylonitrile butadiene styrene (ABS) waste has been successfully recycled into nanofiber membranes by an electrospinning method for air filter applications. The ABS precursor solutions were made by dissolving the ABS waste in three different solvents, DMAc, DMF, and THF, with various concentrations of 10, 20, and 30 wt%. The solvent and solution concentrations affected the fiber properties (size and morphology) and membrane properties (wettability, crystallinity, and mechanical). Accordingly, we tested the fabricated membranes using SEM, FTIR, XRD, water contact angle, and tensile strength test measurements. The SEM images depicted three different morphologies, i.e. beads, beaded fibers, and pure fibers. The FTIR spectra showed that the solvents completely evaporated during the electrospinning process. The water contact angle test exhibited the hydrophobic properties of all the membrane samples. The XRD spectra showed the amorphous structures of all the membranes. The tensile strength test showed that the membranes fabricated using DMF and DMAc solvents had the best mechanical properties. Considering the fiber size, wettability, and mechanical properties, the membranes fabricated using DMAc and DMF solvents had the best criteria as air filter media. Filtration tests on the membranes fabricated using DMAc and DMF solvents with various solution concentrations depicted that the beads affected the membrane pressure drop and efficiency. The beads gave more space among the fibers, which facilitated the air flow through the membrane. The beads greatly reduced the pressure drop without an overly reduced membrane filtration efficiency. This led to a high-quality factor of the membranes that demonstrated their applicability as potential air filter media.

16.
RSC Adv ; 9(45): 26351-26363, 2019 Aug 19.
Article in English | MEDLINE | ID: mdl-35531031

ABSTRACT

The antibacterial activity of garlic (Allium sativum) is believed to be due to its organosulfur compounds, which can supposedly be used further in biomedical applications. This paper reported the use of electrospinning to encapsulate a garlic extract and glycerine in nanofibrous mats. Polyvinylpyrrolidone (PVP) and cellulose acetate (CA) were the building blocks of the composite fibres that served as the hydrophilic matrix to encapsulate the garlic extract with glycerine added mainly to improve the mechanical characteristics of the composite fibres. The combinations of the fibres were PVP/CA, PVP/CA/garlic, PVP/CA/glycerine, and PVP/CA/glycerine/garlic. The characterizations included the morphology, chemical interaction, swelling degree, weight loss, acidity level, wettability, in vitro antibacterial test, and release behaviour test. The composite nanofibrous mats were uniform, bead-free with a size ranging from 350 nm to 900 nm. The Fourier-transform infrared spectra proved the presence of the garlic extract and glycerine in the fibres. The swelling degree test showed that the fibrous mats generally did have maximum swelling degrees above 100% except for the PVP/CA fibrous mat, whose maximum value was not achieved within 48 hours. The fibrous mat with glycerine showed generally larger weight loss compared to the fibrous mats without glycerine. The result of the contact angle measurement proved that the composite fibres are all hydrophilic with the PVP/CA/glycerine/garlic fibres being the least hydrophilic. The pH level of the fibre mats was from 3.7 to 4.0 due to the use of acetic acid. The Young's modulus and ultimate tensile strength of the mats were significantly reduced due to the presence of glycerine. The encapsulation of the garlic extract in the fibres did not eliminate the antibacterial activity of the garlic extract, as proven in the in vitro antibacterial test. The release of the garlic extract from the composite PVP/CA/glycerine/garlic fibres was found to be the largest due to the large diameter of the fibres, while the blend of PVP with CA successfully reduced the rate of release due to the insolubility of CA. We successfully encapsulated the garlic extract and glycerine in the PVP/CA nanofibrous mats with antibacterial activity.

17.
Int J Nanomedicine ; 13: 4927-4941, 2018.
Article in English | MEDLINE | ID: mdl-30214198

ABSTRACT

BACKGROUND: α-Mangostin is a major active compound of mangosteen (Garcinia mangostana L.) pericarp extract (MPE) that has potent antioxidant activity. Unfortunately, its poor aqueous solubility limits its therapeutic application. Purpose: This paper reports a promising approach to improve the clinical use of this substance through electrospinning technique. METHODS: Polyvinylpyrrolidone (PVP) was explored as a hydrophilic matrix to carry α-mangostin in MPE. Physicochemical properties of MPE:PVP nanofibers with various extract-to-polymer ratios were studied, including morphology, size, crystallinity, chemical interaction, and thermal behavior. Antioxidant activity and the release of α-mangostin, as the chemical marker of MPE, from the resulting fibers were investigated. RESULTS: It was obtained that the MPE:PVP nanofiber mats were flat, bead-free, and in a size range of 387-586 nm. Peak shifts in Fourier-transform infrared spectra of PVP in the presence of MPE suggested hydrogen bond formation between MPE and PVP. The differential scanning calorimetric study revealed a noticeable endothermic event at 119°C in MPE:PVP nanofibers, indicating vaporization of moisture residue. This confirmed hygroscopic property of PVP. The absence of crystalline peaks of MPE at 2θ of 5.99°, 11.62°, and 13.01° in the X-ray diffraction patterns of electrospun MPE:PVP nanofibers showed amorphization of MPE by PVP after being electrospun. The radical scavenging activity of MPE:PVP nanofibers exhibited lower IC50 value (55-67 µg/mL) in comparison with pure MPE (69 µg/mL). The PVP:MPE nanofibers tremendously increased the antioxidant activity of α-mangostin as well as its release rate. Applying high voltage in electrospinning process did not destroy the chemical structure of α-mangostin as indicated by retained in vitro antioxidant activity. The release rate of α-mangostin significantly increased from 35% to over 90% in 60 minutes. The release of α-mangostin from MPE:PVP nanofibers was dependent on α-mangostin concentration and particle size, as confirmed by the first-order kinetic model as well as the Hixson-Crowell kinetic model. CONCLUSION: We successfully synthesized MPE:PVP nanofiber mats with enhanced antioxidant activity and release rate, which can potentially improve the therapeutic effects offered by MPE.


Subject(s)
Chemical Phenomena , Drug Liberation , Garcinia mangostana/chemistry , Nanofibers/chemistry , Plant Extracts/pharmacology , Povidone/chemistry , Xanthones/pharmacology , Antioxidants/pharmacology , Calorimetry, Differential Scanning , Kinetics , Nanofibers/ultrastructure , Particle Size , Polymers/chemistry , Solubility , Spectroscopy, Fourier Transform Infrared , X-Ray Diffraction
SELECTION OF CITATIONS
SEARCH DETAIL
...