Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 12(1): 18808, 2022 Nov 05.
Article in English | MEDLINE | ID: mdl-36335199

ABSTRACT

Optical antennas are a fundamental element in optical phased arrays (OPA) and free-space optical interconnects. An outstanding challenge in optical antenna design lies in achieving high radiation efficiency, ultra-compact footprint and broad radiation angle simultaneously, as required for dense 2D OPAs with a broad steering range. Here, we demonstrate a fundamentally new concept of a nanophotonic antenna based on near-field phase-engineering. By introducing a specific near-field phase factor in the Fraunhofer transformation, the far-field beam is widened beyond the diffraction limit for a given aperture size. We use transversally interleaved subwavelength grating nanostructures to control the near-field phase. A Bragg reflector is used at the end of the grating to increase both the efficiency and the far-field beam width. The antenna has a compact footprint of 3.1 µm × 1.75 µm and an ultra-broad far-field beam width of 52° and 62° in the longitudinal and transversal direction, respectively, while the radiation efficiency reaches 82% after incorporating a bottom reflector to further improve the directionality. This unprecedented design performance is achieved with a single-etch grating nanostructure in a 300-nm SOI platform.

2.
Opt Express ; 29(5): 7003-7014, 2021 Mar 01.
Article in English | MEDLINE | ID: mdl-33726210

ABSTRACT

We present a compact silicon-based surface grating antenna design with a high diffraction efficiency of 89% (-0.5 dB) and directionality of 0.94. The antenna is designed with subwavelength-based L-shaped radiating elements in a 300-nm silicon core, maintaining high efficiency with a compact footprint of 7.6 µm × 4.5 µm. The reflectivity remains below -10 dB over the S, C and L optical communication bands. A broad 1-dB bandwidth of 230 nm in diffraction efficiency is achieved with a central wavelength of 1550 nm.

SELECTION OF CITATIONS
SEARCH DETAIL
...