Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Lab Chip ; 21(24): 4823-4830, 2021 12 07.
Article in English | MEDLINE | ID: mdl-34792068

ABSTRACT

Multiplexed protein secretion analysis of single cells is important to understand the heterogeneity of cellular functions and processes in healthy and disease states. However, current single-cell platforms, such as microwell-, microchamber-, or droplet-based assays, suffer from low single-cell occupancy, waste of reagents, limited sensitivity, or inability to perform necessary operations, etc. To overcome these drawbacks, we present an integrated droplet microfluidic device that interfaces with spatially patterned antibody barcodes for multiplexed single-cell secretome analysis. The trapping array of 100 picoliter-sized isolation chambers could achieve >80% single-cell capture efficiency with >90% viability. The single-cell analysis microchip was validated by the detection of four-plexed cytokines, including IL-8, MCP-1, MIP-1b, and TNF-a/IL-10, from unstimulated and lipopolysaccharide (LPS)-stimulated individual human macrophages. We also successfully applied the platform to profile protein secretions of human tumor cell lines and primary/metastatic cancer cells dissociated from cancer patients to observe the secretion heterogeneity among cells. This unique microfluidic platform enables multiplexed secretion assays for static droplet microfluidics, provides a reliable and straightforward workflow for protein secretion assays based on a low number of single cells in a short incubation time (∼4 h), and could have widespread applications for studying secretion-mediated cellular heterogeneity.


Subject(s)
Microfluidic Analytical Techniques , Microfluidics , Antibodies , Cell Line, Tumor , Humans , Secretome , Single-Cell Analysis
2.
Chem Sci ; 8(3): 1736-1751, 2017 Mar 01.
Article in English | MEDLINE | ID: mdl-28451298

ABSTRACT

Up to 90% of cancer-related deaths are caused by metastatic cancer. Circulating tumor cells (CTCs), a type of cancer cell that spreads through the blood after detaching from a solid tumor, are essential for the establishment of distant metastasis for a given cancer. As a new type of liquid biopsy, analysis of CTCs offers the possibility to avoid invasive tissue biopsy procedures with practical implications for diagnostics. The fundamental challenges of analyzing and profiling CTCs are the extremely low abundances of CTCs in the blood and the intrinsic heterogeneity of CTCs. Various technologies have been proposed for the enrichment and single-cell analysis of CTCs. This review aims to provide in-depth insights into CTC analysis, including various techniques for isolation of CTCs with capture methods based on physical and biochemical principles, and single-cell analysis of CTCs at the genomic, proteomic and phenotypic level, as well as current developmental trends and promising research directions.

3.
Anal Bioanal Chem ; 407(20): 6127-36, 2015 Aug.
Article in English | MEDLINE | ID: mdl-26163131

ABSTRACT

The effects of six synthetic imidazolium-based ionic liquids (ILs) on the Cu(II)-catalyzed chemiluminescence of lucigenin (Luc-CL) in the pH range 6.0-11 were investigated. Preliminary experiments found that the CL emission was strongly enhanced or inhibited in the presence of the ILs. The degree of enhancement or inhibition of the CL intensity in the presence of each IL was related to the molecular structure of the IL, the medium used, and the pH. The maximum enhancement of the CL intensity was observed at pH 9.0 (amplification factor = 443). This decrease in the pH at which maximum CL enhancement occurred and the substantial signal amplification of the Luc-CL may be related to a strong interaction between Cu(II) and the imidazolium ring of superior ILs at this pH. Additionally, the formation of IL microdomains in semi-aqueous media permitted more solubility of the product yielded by the Luc-CL reaction (N-methylacridone), which could increase the CL intensity. To obtain consistent data on the catalytic efficiency of Cu(II) in the presence of various ILs as well as the corresponding CL emission intensities, fluorescence quantum yields (Φ F) of lucigenin were measured under the same conditions. Comparison of the data pointed to the mechanism that controls the properties of Luc-CL in the presence of the Cu(II)/IL complexes. Based on the catalytic effect of the Cu(II)/IL complex and the measurement of the enzymatically generated H2O2, a novel, simple, and sensitive CL method for determining glucose with a detection limit (LoD) of 6.5 µM was developed. Moreover, this method was satisfactorily applied to the determination of glucose in human serum and urine samples. Graphical Abstract The lucigenin chemiluminescence assay for H2O2 and glucose using imidazolium-based ionic liquid derivatives/Cu(II) complexes as efficient catalysts at pH 9.0.


Subject(s)
Acridines/chemistry , Blood Glucose/analysis , Glycosuria/diagnosis , Hydrogen Peroxide/analysis , Ionic Liquids/chemistry , Luminescent Agents/chemistry , Luminescent Measurements/methods , Catalysis , Coordination Complexes/chemistry , Copper/chemistry , Glucose/analysis , Humans , Imidazoles/chemistry , Limit of Detection , Luminescence , Models, Molecular
4.
Food Chem ; 173: 514-20, 2015 Apr 15.
Article in English | MEDLINE | ID: mdl-25466053

ABSTRACT

A new sensitive chemiluminescence (CL) procedure for the detection of hexythiazox (HXTZ) is presented, based on the quenching effect of the HXTZ in the luminol-H2O2 system using gold nanoparticles (GNPs) as a catalyst. The Box-Behnken design matrix and response surface methodology (RSM) have been applied in designing the experiments for studying the interactive effects of the three most important variables pH, luminol, and H2O2 concentrations on the CL intensity of luminol catalysed by GNPs. Under the optimal conditions, the CL intensity was linear with HXTZ concentration in the range of 0.017-0.42 µg mL(-1), and the limit of detection (LoD) was 0.011 µg mL(-1). The procedure has been successfully applied to the detection of HXTZ residues in citrus fruits and water samples at trace levels. Mean recoveries obtained were between 84.0% and 95.3%, with a repeatability precision of <6%. Meanwhile, the possible mechanism of the inhibited CL intensity was discussed.


Subject(s)
Citrus/chemistry , Gold/chemistry , Hydrogen Peroxide/chemistry , Luminol/chemistry , Metal Nanoparticles/chemistry , Thiazolidines/analysis , Catalysis , Luminescent Measurements
5.
Spectrochim Acta A Mol Biomol Spectrosc ; 122: 405-10, 2014 Mar 25.
Article in English | MEDLINE | ID: mdl-24326259

ABSTRACT

The catalyzed luminol chemiluminescent reaction has received a great amount of attention because of its high sensitivity and low background signal which make the reaction an attractive analytical chemistry tool. The present study, introduces the beneficial catalytic effects of dinuclear Cu(II) complex [Cu2L2(TAE)]X2, where TAE=tetraacetylethane; L=N,N(')-dibenzylethylenediamine and X=ClO4 on the luminol chemiluminescent reaction as a novel probe for the determination of glutathione (GSH) and L-cysteine (CySH) in human serum and urine. The [Cu2L2(TAE)]X2 has exhibited highly efficient catalytic activity of luminol CL as an artificial peroxidase model at pH as low as 7.5 in water in the presence of H2O2⋅GSH and CySH can induce a sharp decrease in CL intensity from the [Cu2L2(TAE)]X2-catalyzed luminol system. Under the selected experimental conditions, a linear relationship was obtained between the CL intensity and the concentrations of GSH and CySH in the range of 1.0×10(-7)-1.0×10(-4) M, with detection limits (S/N=3) of 2.7×10(-8) and 6.8×10(-8) M and RSD<4.2% (n=7) for GSH and CySH, respectively.


Subject(s)
Copper/chemistry , Cysteine/blood , Cysteine/urine , Glutathione/blood , Glutathione/urine , Luminescent Agents/chemistry , Luminol/chemistry , Catalysis , Coordination Complexes/chemistry , Humans , Hydrogen Peroxide/chemistry , Luminescence , Luminescent Measurements/methods , Peroxidase/chemistry
6.
Anal Sci ; 29(8): 815-21, 2013.
Article in English | MEDLINE | ID: mdl-23934563

ABSTRACT

A novel, simple, cheap, and high sensitivity batch chemiluminescent method for the determination of catecholamine drugs, epinephrine (E), dopamine (DA) and methyldopa (MD) at microgram levels in pharmaceutical formulations is described. The method is based on a chemiluminescence (CL) system arising from the reaction of bis(2,4,6-trichlorophenyl) oxalate (TCPO) with H2O2 in the presence of a novel fluorescer, furandicarboxylate, and is proposed as a new analytical method for the determination of catecholamines. The method is based on the inhibition of CL emission by DA and its enhancement by E and MD. Under optimal conditions, good linear ranges were obtained, 0.5 - 12.7, 0.06 - 1.83 and 0.069 - 3.52 µg/mL with detection limits of 0.30, 0.03 and 0.04 µg/mL (S/N = 3) for DA, E and MD, respectively. Moreover, a pooled-intermediate model was used to determine the kinetic parameters of CL with and without catecholamines and a possible CL mechanism was discussed.


Subject(s)
Catecholamines/analysis , Dicarboxylic Acids/chemistry , Hydrogen Peroxide/chemistry , Oxalates/chemistry , Pharmaceutical Preparations/chemistry , Furans/chemistry , Limit of Detection , Luminescence
7.
Chem Commun (Camb) ; 48(35): 4187-9, 2012 May 04.
Article in English | MEDLINE | ID: mdl-22446385

ABSTRACT

Colour emission of core-shell silica-PEG nanoparticles in water is tuned with an electrochemically induced energy transfer approach. The lack of solubility problems, side electrochemical reactions involving donors and acceptors within the nanoparticle, and the possibility of using many classes of dyes in ECL applications confirm the validity of this strategy.

SELECTION OF CITATIONS
SEARCH DETAIL
...