Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-35897481

ABSTRACT

While a large body of literature has shown the health problems of illicit drug use, research is needed on how substance abuse impacts DNA damage and contaminants in blood, especially given Pb-contaminated opium. This pilot study aimed to evaluate the levels of lead (Pb), 8-hydroxy di-guanine (8-oxo-Gua), and malondialdehyde (MDA) in the blood serum of opium addicts and non-addict people. The current study is a case-control study with a cross-sectional design. A sample of 50 opium-addicted and non-addict adults were chosen for this study using convenience and random sampling methods. Participants were divided into two groups: addicts and non-addicts. The atomic absorption spectroscopy method was used to measure the quantity of Pb, and the Enzyme-Linked Immunosorbent Assay (ELISA) method was used to measure the amount of 8-oxo-Gua and MDA. The data were analyzed using an independent t-test. The results show that the amount of Pb in the blood serum of addicted women and men was higher than levels in non-addict men and women, for the study participants (p-value = 0.001). Blood levels were not significantly different between addicts and non-addicts for men or women for 8-oxo-Gua (p-value = 0.647 for women and p-value = 0.785 for men) and MDA (p-value = 0.867 for women and p-value = 0.995 for men). In general, addicts' blood Pb levels were found to be substantially higher than those of normal non-addict persons in this pilot study. As a result, testing for blood Pb levels in addicts may be informative in instances when symptoms are inconclusive.


Subject(s)
Illicit Drugs , Substance-Related Disorders , Adult , Case-Control Studies , Cross-Sectional Studies , Female , Guanine/analogs & derivatives , Humans , Lead , Male , Malondialdehyde , Opium , Pilot Projects , Serum
2.
Polymers (Basel) ; 12(6)2020 Jun 09.
Article in English | MEDLINE | ID: mdl-32526844

ABSTRACT

There are different ways for antibiotics to enter the aquatic environment, with wastewater treatment plants (WWTP) considered to be one of the main points of entrance. Even treated wastewater effluent can contain antibiotics, since WWTP cannot eliminate the presence of antibiotics. Therefore, adsorption can be a sustainable option, compared to other tertiary treatments. In this direction, a versatile synthesis of poly(styrene-block-acrylic acid) diblock copolymer/Fe3O4 magnetic nanocomposite (abbreviated as P(St-b-AAc)/Fe3O4)) was achieved for environmental applications, and particularly for the removal of antibiotic compounds. For this reason, the synthesis of the P(St-b-AAc) diblock copolymer was conducted with a reversible addition fragmentation transfer (RAFT) method. Monodisperse superparamagnetic nanocomposite with carboxylic acid groups of acrylic acid was adsorbed on the surface of Fe3O4 nanoparticles. The nanocomposites were characterized with scanning electron microscopy (SEM), X-ray diffraction (XRD) and vibrating sample magnetometer (VSM) analysis. Then, the nanoparticles were applied to remove ciprofloxacin (antibiotic drug compound) from aqueous solutions. The effects of various parameters, such as initial drug concentration, solution pH, adsorbent dosage, and contact time on the process were extensively studied. Operational parameters and their efficacy in the removal of Ciprofloxacin were studied. Kinetic and adsorption isothermal studies were also carried out. The maximum removal efficiency of ciprofloxacin (97.5%) was found at an initial concentration of 5 mg/L, pH 7, adsorbent's dosage 2 mg/L, contact time equal to 37.5 min. The initial concentration of antibiotic and the dose of the adsorbent presented the highest impact on efficiency. The adsorption of ciprofloxacin was better fitted to Langmuir isotherm (R2 = 0.9995), while the kinetics were better fitted to second-order kinetic equation (R2 = 0.9973).

3.
J Environ Manage ; 266: 110616, 2020 Jul 15.
Article in English | MEDLINE | ID: mdl-32392147

ABSTRACT

Furfural is a toxic compound that can cause many problems for human health and the environment. In this study, we addressed the degradation of furfural in aqueous solution using the activated persulfate (SPS) and peroxymonosulfate (PMS) through the ultrasonic (US) wave. Besides, the effect of various parameters (pH, oxidizing dose, initial furfural concentration, US frequency, Inorganic anions concentration, and scavenger) on SPS + US (SPS/US) and PMS + US (PMS/US) processes were examined. The results showed, in order to furfural removal, the US had excellent efficiency in activating SPS and PMS, as in SPS/US and PMS/US processes, 95.3% and 58.4% of furfural (at 25 mg/L concentration) was decomposed in 90 min, respectively. The furfural degradation rate increased with increasing oxidizing dose and US frequency in both SPS/US and PMS/US processes. Considering the synergistic effect, the best removal rate has occurred in the SPS/US process. In the SPS/US and PMS/US processes, furfural removal increased at natural pH (pH 7), and the presence of inorganic anions such as NO3- and Cl- had negative effects on furfural removal efficiency. Also CO32- and HCO3- acted as a radical scavenger in the SPS/US process but these anions in the PMS/US process produced more SO4-° radicals, and subsequently, they increased the furfural degradation rate. The results also showed that the predominant radical in the oxidation reactions is the sulfate radical. This study showed that the SPS/US and PMS/US processes are promising methods for degrading organic pollutants in the environment.


Subject(s)
Ultrasonic Waves , Water Pollutants, Chemical , Furaldehyde , Oxidation-Reduction , Peroxides
4.
ScientificWorldJournal ; 2017: 3519487, 2017.
Article in English | MEDLINE | ID: mdl-28929128

ABSTRACT

Penicillin G (PG) is one of the most widely consumed antibiotics around the world. Release of PG in environment may lead to contamination of water resources. The aim of the present work is to assess feasibility of applying UV-activated persulfate process in removal of PG from aquatic environments. The study examined the effect of pH (3-11), persulfate initial concentration (0.5-3 mM), reaction time (15-90 minutes), and initial concentration of PG (0.02-0.14 mM) on PG decomposition. Also, the pseudo-first-order kinetic model was used for kinetic analysis of PG removal. The results indicated that UV-activated persulfate process can effectively eliminate PG from water. The highest PG removal efficiency was obtained as 94.28% at pH 5, and the decomposition percentage was raised by increasing persulfate dose from 0.5 to 3 mM and the reaction time from 15 to 90 minutes. Besides, the removal efficiency decreased through increasing the initial concentration of PG. UV-activated persulfate process effectively decomposes PG and eliminates it from water.


Subject(s)
Penicillin G , Sulfides/chemistry , Ultraviolet Rays , Water Pollutants, Chemical , Water Purification , Adsorption , Kinetics , Molecular Structure , Time Factors , Water , Water Purification/instrumentation , Water Purification/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...