Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Front Chem ; 10: 996358, 2022.
Article in English | MEDLINE | ID: mdl-36339038

ABSTRACT

Cocaine as a detrimental addictive drug threats human health through inducing heart problem, blood pressure, anxiety, immunodeficiency, paranoia, and organ damage. Thus, the quantification of cocaine in the biological samples by a simple, high specificity, and fast method is highly urgent to decrease the harmful effect of the misuse of this drug. In this study, we constructed a novel fluorescent aptasensor by combining the fluorescein (FAM)-modified specific aptamer and AuNPs in a capillary tube as the sensing substrate for the first time. The presence of cocaine recovered the fluorescence response of the aptasensor through interaction with the aptamer and differentiation of the aptamer@AuNPs complex. By fluorescence microscopy imaging of the aptasensor substrate and its quantitative analysis, a remarkable linear range from 100 pM to 600 µM and the ultra-low limit of detection (LOD) as 0.31 pM were achieved for the target detection. Cocaine was successfully quantified in the real samples (human serum and urine) by using the aptasensor. The aptasensor is simple, easy-to-use, favorable applicability, and cost-effective; and to the best of our knowledge, it is the first use of the capillary tube as a sensing platform just by using about 3 µl of the samples. It is also an easy-to-carry tool, promising for the on-site target detection. Besides, it can be a portable device for monitoring cocaine by using a handheld single-beam fluorescence microscope. It can be an appropriate detection tool in forensic science and medicine.

2.
Anal Chim Acta ; 1219: 340031, 2022 Aug 01.
Article in English | MEDLINE | ID: mdl-35715136

ABSTRACT

Herein, a facile fluorescent CRISPR-Cas12a-based sensing strategy is presented for prostate specific antigen (PSA), as a prostate cancer biomarker, with the assistance of a cruciform DNA nanostructure and PicoGreen (PG) as a fluorochrome. Highly sensitive recognition of PSA is one of the virtues of the proposed method which comes from the use of unique features of both CRISPR-Cas12a and DNA structure in the design of the aptasensor. The presence of PSA creates a cruciform DNA nanostructure in the sample which can be loaded by PG and make sharp fluorescence emission. While, when there is no PSA, the CRISPR-Cas12a digests sequences 1 and 3 as single-stranded DNAs, causing no DNA structure and a negligible fluorescence is detected after addition of PG. This aptasensor presents a sensitive recognition performance with detection limit of 4 pg/mL and a practical use for determination of PSA in serum samples. So, this analytical strategy introduces a convenient and highly sensitive approach for detection of disease biomarkers.


Subject(s)
Biosensing Techniques , Prostate-Specific Antigen , Biosensing Techniques/methods , CRISPR-Cas Systems , DNA/genetics , DNA, Cruciform , Humans , Male
SELECTION OF CITATIONS
SEARCH DETAIL
...