Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Appl Biochem Biotechnol ; 196(1): 261-274, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37119504

ABSTRACT

Replication-competent oncolytic adenovirus (TOA2) gene therapy is a recently introduced anti-tumor treatment regimen with superior results. The biodistribution studies of virus vector-based medicine seem more cautious and have been given much attention recently in terms of its quality and safety in preclinical trials. The current study determined the biodistribution and safety of a replication-competent adenovirus in different organs to predict its toxicity threshold. The present study has used TOA2, while biodistribution analysis was performed in human lung carcinoma A549-induced tumor-bearing nude mice model. Intratumoral injection was applied onto tumor-bearing mice with the adenovirus (3×1010 VP per mouse). Mice were sacrificed at the end of the experiment and the organs were dissected. Biodistribution analysis was done with complete hexon gene detection in each organ using quantitative real-time polymerase chain reaction (qRT-PCR). The biodistribution and concentration profiles showed that the TOA2 is well distributed in the entire tumor tissue. After dose 3 at day 11, the concentration of the virus has increased in the tumor tissue from 2240.54 (± 01.69) copies/100 ng genome to 13,120.28 (± 88.21) copies/100 ng genome on the 18th day, which eventually approached 336.45 (± 23.41) copies/100ng genome on the day 36. On the contrary, the concentration of the same decreased in the order of the liver, kidney, spleen, lung, and heart over time but no distributional traces in gonads. But the concentration found decreased dramatically in blood and other organs, while at the end of the experiment no detectable distribution was seen besides tumor tissue. The study confirms that adenovirus-based tumor therapy using conditionally replicating competent oncolytic TOA2 exhibited great efficiency with no toxicity at all.


Subject(s)
Carcinoma , Oncolytic Virotherapy , Oncolytic Viruses , Humans , Animals , Mice , Oncolytic Virotherapy/methods , Mice, Nude , Tissue Distribution , Adenoviridae/genetics , Genetic Vectors/genetics , Carcinoma/genetics , Lung , Genes, Neoplasm , Cell Line, Tumor , Oncolytic Viruses/genetics , Virus Replication
2.
Biomedicines ; 11(4)2023 Apr 13.
Article in English | MEDLINE | ID: mdl-37189782

ABSTRACT

Integral membrane proteins, known as Transient Receptor Potential (TRP) channels, are cellular sensors for various physical and chemical stimuli in the nervous system, respiratory airways, colon, pancreas, bladder, skin, cardiovascular system, and eyes. TRP channels with nine subfamilies are classified by sequence similarity, resulting in this superfamily's tremendous physiological functional diversity. Pancreatic Ductal Adenocarcinoma (PDAC) is the most common and aggressive form of pancreatic cancer. Moreover, the development of effective treatment methods for pancreatic cancer has been hindered by the lack of understanding of the pathogenesis, partly due to the difficulty in studying human tissue samples. However, scientific research on this topic has witnessed steady development in the past few years in understanding the molecular mechanisms that underlie TRP channel disturbance. This brief review summarizes current knowledge of the molecular role of TRP channels in the development and progression of pancreatic ductal carcinoma to identify potential therapeutic interventions.

3.
Life (Basel) ; 12(6)2022 Jun 16.
Article in English | MEDLINE | ID: mdl-35743934

ABSTRACT

Trauma and bone loss from infections, tumors, and congenital diseases make bone repair and regeneration the greatest challenges in orthopedic, craniofacial, and plastic surgeries. The shortage of donors, intrinsic limitations, and complications in transplantation have led to more focus and interest in regenerative medicine. Structures that closely mimic bone tissue can be produced by this unique technology. The steady development of three-dimensional (3D)-printed bone tissue engineering scaffold therapy has played an important role in achieving the desired goal. Bioceramic scaffolds are widely studied and appear to be the most promising solution. In addition, 3D printing technology can simulate mechanical and biological surface properties and print with high precision complex internal and external structures to match their functional properties. Inkjet, extrusion, and light-based 3D printing are among the rapidly advancing bone bioprinting technologies. Furthermore, stem cell therapy has recently shown an important role in this field, although large tissue defects are difficult to fill by injection alone. The combination of 3D-printed bone tissue engineering scaffolds with stem cells has shown very promising results. Therefore, biocompatible artificial tissue engineering with living cells is the key element required for clinical applications where there is a high demand for bone defect repair. Furthermore, the emergence of various advanced manufacturing technologies has made the form of biomaterials and their functions, composition, and structure more diversified, and manifold. The importance of this article lies in that it aims to briefly review the main principles and characteristics of the currently available methods in orthopedic bioprinting technology to prepare bioceramic scaffolds, and finally discuss the challenges and prospects for applications in this promising and vital field.

4.
Article in English | MEDLINE | ID: mdl-35722136

ABSTRACT

The pomegranate flower is an ancient herb in traditional Chinese medicine with multiple properties. Recent studies have shown that pomegranate flower extract is beneficial, especially for hyperglycemia. In this experiment, we investigated the diastolic effect of pomegranate flower polyphenol (PFP) extract on the isolated thoracic aorta of rats in both the absence and presence of high glucose levels. Isotonic contractile forces were recorded from aortic rings (about 3 mm in length) from rats using the BL-420F Biological Function Test System. Tissues were precontracted with 60 mM KCl to obtain maximum tension under 1.0 g load for 1 hour before the balance was achieved, and the fluid was changed every 15 minutes. PFP (700 mg/L-900 mg/L) showed a concentration-dependent relaxant effect on the aortic rings; vasodilation in the endothelium-intact was significantly higher than that in the de-endothelialized segments (P < 0.01). The endothelium-dependent vasorelaxant effect of PFP was partially attenuated by K+ channel blockers, tetraethylammonium (TEA), glibenclamide (Glib), and BaCl2, as well as L-NAME (eNOS inhibitor) on the denuded endothelium artery ring. Concentration-dependent inhibition of PFP on releasing intracellular Ca2+ in the Ca2+-free solution and vasoconstriction of CaCl2 in Ca2+-free buffer plus K+ (60 mM) was observed. In addition, PFP (0.1-10 mg/L) showed significant inhibition of acetylcholine-induced endothelial-dependent relaxation in the aorta of rats in the presence of high glucose (44 mmol/L). Nevertheless, the vasodilating effect of PFP was inhibited by atropine and L-NAME. The results indicated that PFP-induced vasodilation was most likely related to the antioxidant effects through enhanced NO synthesis, as well as the blocking of K+ channels and inhibition of extracellular Ca2+ entry. In conclusion, these observations showed that PFP ameliorates vasodilation in hyperglycemic rats. Hence, our results suggest that PFP supplementation may be beneficial for hypertensive patients with diabetes.

5.
Biomed Res Int ; 2021: 8823222, 2021.
Article in English | MEDLINE | ID: mdl-33681381

ABSTRACT

Nutraceuticals have taken on considerable significance due to their supposed safety and possible nutritional and medicinal effects. Pharmaceutical and dietary companies are conscious of monetary success, which benefits healthier consumers and the altering trends that result in these heart-oriented value-added products being proliferated. Numerous nutraceuticals are claimed to have multiple therapeutic benefits despite advantages, and unwanted effects encompass a lack of substantial evidence. Several common nutraceuticals involve glucosamine, omega-3, Echinacea, cod liver oil, folic acid, ginseng, orange juice supplemented with calcium, and green tea. This review is dedicated to improving the understanding of nutrients based on specific illness indications. It was reported that functional foods contain physiologically active components that confer various health benefits. Studies have shown that some foods and dietary patterns play a major role in the primary prevention of many ailment conditions that lead to putative functional foods being identified. Research and studies are needed to support the possible health benefits of different functional foods that have not yet been clinically validated for the relationships between diet and health. The term "functional foods" may additionally involve health/functional health foods, foods enriched with vitamins/minerals, nutritional improvements, or even conventional medicines.


Subject(s)
Dairy Products , Dietary Supplements , Functional Food , Humans
6.
Sci Rep ; 11(1): 4283, 2021 02 19.
Article in English | MEDLINE | ID: mdl-33608623

ABSTRACT

Nowadays, artificial bone materials have been widely applied in the filling of non-weight bearing bone defects, but scarcely ever in weight-bearing bone defects. This study aims to develop an artificial bone with excellent mechanical properties and good osteogenic capability. Firstly, the collagen-thermosensitive hydrogel-calcium phosphate (CTC) composites were prepared as follows: dissolving thermosensitive hydrogel at 4 °C, then mixing with type I collagen as well as tricalcium phosphate (CaP) powder, and moulding the composites at 37 °C. Next, the CTC composites were subjected to evaluate for their chemical composition, micro morphology, pore size, Shore durometer, porosity and water absorption ability. Following this, the CTC composites were implanted into the muscle of mice while the 70% hydroxyapatite/30% ß-tricalcium phosphate (HA/TCP) biomaterials were set as the control group; 8 weeks later, the osteoinductive abilities of biomaterials were detected by histological staining. Finally, the CTC and HA/TCP biomaterials were used to fill the large segments of tibia defects in mice. The bone repairing and load-bearing abilities of materials were evaluated by histological staining, X-ray and micro-CT at week 8. Both the CTC and HA/TCP biomaterials could induce ectopic bone formation in mice; however, the CTC composites tended to produce larger areas of bone and bone marrow tissues than HA/TCP. Simultaneously, bone-repairing experiments showed that HA/TCP biomaterials were easily crushed or pushed out by new bone growth as the material has a poor hardness. In comparison, the CTC composites could be replaced gradually by newly formed bone and repair larger segments of bone defects. The CTC composites trialled in this study have better mechanical properties, osteoinductivity and weight-bearing capacity than HA/TCP. The CTC composites provide an experimental foundation for the synthesis of artificial bone and a new option for orthopedic patients.


Subject(s)
Biocompatible Materials , Bone Regeneration , Bone Substitutes , Calcium Phosphates , Weight-Bearing , Animals , Bone Substitutes/chemistry , Calcium Phosphates/chemistry , Chemical Phenomena , Hydrogels/chemistry , Imaging, Three-Dimensional , Immunohistochemistry , Materials Testing , Mice , Models, Animal , Prostheses and Implants , Spectrum Analysis , X-Ray Microtomography
7.
Biomed Res Int ; 2020: 6030581, 2020.
Article in English | MEDLINE | ID: mdl-32802859

ABSTRACT

This study aims at exploring the clinical efficacy and sonographic changes of photodynamic therapy (PDT) using Hematoporphyrin Monomethyl Ether (HMME) for the treatment of port-wine stains (PWS). Forty-five patients with PWS were recruited between March 2017 and June 2018 from the Department of Dermatology of The Third Affiliated Hospital of Soochow University. Five cases were of the pink type, thirty-nine cases were of the purple-red type, and one case was of the thickened type. All patients received three treatment sessions of PDT. After covering normal skin outside the treated area, patients received an intravenous injection of 5 mg/kg HMME within 20 minutes. The affected areas were exposed to a 532 nm LED light and were kept vertically at a distance of 10 cm. The irradiation energy density was set between 80 and 110 J/cm2 in 15-minute sessions. Intermittent power density adjustment was performed at a rate of 5 mW/cm2, and the treatment was withheld when the endpoint reaction appeared. Three follow-ups were performed before and after treatment, respectively, and the efficacy, thickness, and density of skin before and after treatment were evaluated with high-frequency ultrasound. The overall efficacy rate was 97.78% in forty-five cases after treatment for three sessions. Efficacy was related to age (P = 0.029) and lesion severity (P < 0.001). There were significant differences in the efficacy between the groups of <18 years old, 18-29 years old, and >29 years old (P = 0.029). A marked decrease in the numbers of distorted enlarged blood vessels per unit of the lesion was observed under high-frequency ultrasound. There were significant differences in skin thickness and skin density before and after treatment (F = 14.528, 5.428, P < 0.001). The swelling was reported to varying degrees in the treated areas in 23 patients with cheek lesion and in 6 frontal lesions. Hyperpigmentation after inflammation was observed in four patients that faded spontaneously after two months. In conclusion, photodynamic therapy for the treatment of PWS using HMME is effective and safe with few adverse reactions. Moreover, monitoring the changes in skin thickness and density of lesion tissue using high-frequency ultrasound can objectively evaluate the clinical efficacy of HMME photodynamic therapy and provide the basis for the formulation of individualized photodynamic therapy.


Subject(s)
Hematoporphyrins/administration & dosage , Photochemotherapy , Photosensitizing Agents/administration & dosage , Port-Wine Stain , Adolescent , Adult , Female , Humans , Male , Port-Wine Stain/diagnostic imaging , Port-Wine Stain/drug therapy , Port-Wine Stain/pathology , Ultrasonography
8.
Adv Physiol Educ ; 44(3): 453-458, 2020 Sep 01.
Article in English | MEDLINE | ID: mdl-32795125

ABSTRACT

Traditional oral examination (TOE) is criticized for the shortage of objectivity, standardization, and reliability. These perceived limitations can be mitigated by the introduction of structured oral examination (SOE). There is little evidence of the implementation of SOE in physiology laboratory courses. The purpose of this study was to investigate the effect of SOE in laboratory-based learning sessions. Second-year medical students (n = 114) attended a 16-wk physiology laboratory course. They were initially assessed by TOE in the middle of the academic term. The students' perspectives on this assessment were measured by a modified three-point Likert-type scale questionnaire. Following this, faculty members prepared topics for SOE; nine topics were included from each laboratory course. The correct answers and scoring criteria were discussed among the faculty before the SOE event. One week after the last laboratory course, SOE was carried out for each student. As with the TOE process, student feedback was collected via a modified three-point Likert-type scale questionnaire. The mean laboratory homework score from the first four and last four laboratory courses was also calculated. Paper exams were also conducted after TOE and SOE. The results show that SOE is more acceptable to students than TOE. Significant differences (P < 0.05) were observed in terms of uniformity of questions asked, syllabus coverage, and anxiety levels. In addition, SOE improved students' performance in the laboratory course explored here. We contend that SOE shows promise as an effective assessment tool in laboratory-based physiology learning sessions.


Subject(s)
Education, Medical, Undergraduate , Physiology , Students, Medical , Diagnosis, Oral , Educational Measurement , Humans , Laboratories , Physiology/education , Reproducibility of Results
9.
Metabolites ; 10(3)2020 Mar 05.
Article in English | MEDLINE | ID: mdl-32151083

ABSTRACT

To investigate the osteoinductive mechanism triggered by hydroxyapatite/ß-tricalcium phosphate (HA/ß-TCP) biomaterials in mice which keep exercising. Methods: The HA/ß-TCP biomaterials were implanted in the muscle of bilateral thighs (non-osseous sites) of eighty Balb/C mice. All animals were then randomly divided into 4 groups (n = 20). In group 1 (negative control group), the mice were fed routinely. In group 2 (running group), all mice were put on a treadmill which was set to a 60-degree incline. The mice ran 20 min thrice each day. A 5-minute break was included in the routine from day three onwards. In group 3 (weight-bearing group), all mice underwent weight-bearing running. The mice in this group performed the same routine as group 2 while carrying 5 g rubber weights. In group 4 (positive control group), dexamethasone was injected in the implanted sites of the biomaterials from the day of the operation. All mice were injected once per week and received a total of 8 injections. One and eight weeks after surgery, the blood serum was collected to detect inflammatory and immunological factors by ELISA. In addition to this, biomaterial specimens were obtained to observe inflammatory and osteogenic levels via histological staining and to facilitate analysis of the osteogenic mechanism by Western Blot. Results: The inflammation indexes caused by surgery were alleviated through running or weight-bearing running: The tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) levels were significantly reduced in groups 2 and 3 at week 8. Exercise also enhanced the secretion of interferon-γ (IFN-γ) in mice; this can strengthen their immunity. The new bone tissues were observed in all groups; however, the area percentage of new bone tissues and the number of osteoblasts were highest in the weight-bearing group. Furthermore, the key proteins of wingless/integrated (Wnt) signaling pathway, Wnt1, Wnt3a, and ß-catenin, were up-regulated during osteoinduction. This up-regulation activated runt-related transcription factor-2 (Runx2), increased the expression of osteopontin (OPN) and osteocalcin (OCN). Conclusion: Weight-bearing exercise can promote the bone and bone marrow formation through the Wnt signaling pathway: Observations documented here suggest that the proper exercise is beneficial to the recovery of bone damage.

10.
Tumour Biol ; 35(12): 11855-60, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25230785

ABSTRACT

Genital human papillomavirus (HPV) is associated with the development of cutaneous malignant tumors, and differences in HPV subtypes are found in several cancers by histology. NF-κB is persistently activated in most cancers and confers a survival advantage to cancer cells, while A20 is a critical negative regulator of NF-κB and is an important tumor suppressor inactivated in B cell lymphomas. This study was undertaken to identify HPV types in cutaneous squamous cell carcinoma (SCC) as well as to determine whether the crosstalk of A20/NF-κB was involved in HPV-induced SCC. Overall, HPV positivity was observed to be 66.2 %, with HPV16 being most common followed by infection with HPV18. Out of 43 HPV-positive samples, 35 samples were positive for one or more high-risk HPV (HR-HPV) types, suggesting a high association of SCC with HR-HPV infection, while only five HPV infections were detected in 21 normal skin samples and low-risk HPV (LR-HPV) infection was the most common. Both A20 and NF-κB were overexpressed in HPV-positive SCC samples (56 vs 87.4 %) and were closely correlated with TNM stage and lymph node transfer, respectively. More interestingly, the expression of A20 and NF-κB was much higher in HR-HPV samples than in LR-HPV samples. These results suggest that the crosstalk of A20 and NF-κB may contribute to HR-HPV-associated tumor growth and metastasis of SCC and may be a novel therapeutic target for SCC in the future.


Subject(s)
Carcinoma, Squamous Cell/etiology , Carcinoma, Squamous Cell/metabolism , DNA-Binding Proteins/metabolism , Intracellular Signaling Peptides and Proteins/metabolism , NF-kappa B/metabolism , Nuclear Proteins/metabolism , Papillomavirus Infections/complications , Adult , Aged , Alphapapillomavirus/genetics , Carcinoma, Squamous Cell/pathology , Female , Genotype , Humans , Immunohistochemistry , Male , Middle Aged , Molecular Typing , Neoplasm Grading , Neoplasm Metastasis , Neoplasm Staging , Papillomavirus Infections/virology , Tumor Necrosis Factor alpha-Induced Protein 3
SELECTION OF CITATIONS
SEARCH DETAIL
...