Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 14(21)2021 Nov 08.
Article in English | MEDLINE | ID: mdl-34772239

ABSTRACT

Oxide Precipitation-Hardened (OPH) alloys are a new generation of Oxide Dispersion-Strengthened (ODS) alloys recently developed by the authors. The mechanical properties of this group of alloys are significantly influenced by the chemical composition and appropriate heat treatment (HT). The main steps in producing OPH alloys consist of mechanical alloying (MA) and consolidation, followed by hot rolling. Toughness was obtained from standard tensile test results for different variants of OPH alloy to understand their mechanical properties. Three machine learning techniques were developed using experimental data to simulate different outcomes. The effectivity of the impact of each parameter on the toughness of OPH alloys is discussed. By using the experimental results performed by the authors, the composition of OPH alloys (Al, Mo, Fe, Cr, Ta, Y, and O), HT conditions, and mechanical alloying (MA) were used to train the models as inputs and toughness was set as the output. The results demonstrated that all three models are suitable for predicting the toughness of OPH alloys, and the models fulfilled all the desired requirements. However, several criteria validated the fact that the adaptive neuro-fuzzy inference systems (ANFIS) model results in better conditions and has a better ability to simulate. The mean square error (MSE) for artificial neural networks (ANN), ANFIS, and support vector regression (SVR) models was 459.22, 0.0418, and 651.68 respectively. After performing the sensitivity analysis (SA) an optimized ANFIS model was achieved with a MSE value of 0.003 and demonstrated that HT temperature is the most significant of these parameters, and this acts as a critical rule in training the data sets.

2.
Materials (Basel) ; 13(23)2020 Nov 30.
Article in English | MEDLINE | ID: mdl-33266309

ABSTRACT

The microstructure, mechanical, tribological, and corrosion properties of Fe-Cr-Al-Y-based oxide-precipitation-hardened (OPH) alloy at room temperature are presented. Two OPH alloys with a composition of 0.72Fe-0.15Cr-0.06Al-0.03Mo-0.01Ta-0.02Y2O3 and 0.03Y2O3 (wt.%) were prepared by mechanical alloying with different milling times. After consolidation by hot rolling, the alloys presented a very fine microstructure with a grain size of approximately 180 nm. Such a structure is relatively brittle, and its mechanical properties are enhanced by heat treatment. Annealing was performed at three temperatures (1000 °C, 1100 °C, and 1200 °C), with a holding time from 1 to 20 h. Tensile testing, wear testing, and corrosion testing were performed to evaluate the effect of heat treatment on the behavior and microstructural properties. The grain size increased almost 10 times by heat treatment, which influenced the mechanical properties. The ultimate tensile strength increased up to 300% more compared to the initial state. On the other hand, heat treatment has a negative effect on corrosion and wear resistance.

SELECTION OF CITATIONS
SEARCH DETAIL
...