Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Pharm Pharmacol ; 74(10): 1467-1476, 2022 Oct 10.
Article in English | MEDLINE | ID: mdl-34928372

ABSTRACT

OBJECTIVES: The aim of the work was to introduce 3D printing technology for the design and fabrication of drug-eluting contact lenses (DECL) for the treatment of glaucoma. The development of 3D printed lenses can effectively overcome drawbacks of existing approaches by using biocompatible medical grade polymers that provide sustained drug release of timolol maleate for extended periods. METHODS: Hot melt extrusion was coupled with fusion deposition modelling (FDM) to produce printable filaments of ethylene-vinyl acetate copolymer-polylactic acid blends at various ratios loaded with timolol maleate. Physicochemical and mechanical characterisation of the printed filaments was used to optimise the printing of the contact lenses. KEY FINDINGS: 3D printed lenses with an aperture (opening) and specified dimensions could be printed using FDM technology. The lenses presented a smooth surface with good printing resolution while providing sustained release of timolol maleate over 3 days. The findings of this study can be used for the development of personalised DECL in the future.


Subject(s)
Contact Lenses , Timolol , Delayed-Action Preparations , Drug Liberation , Ethylenes , Polymers , Printing, Three-Dimensional , Tablets , Technology, Pharmaceutical/methods
2.
Int J Pharm ; 609: 121153, 2021 Nov 20.
Article in English | MEDLINE | ID: mdl-34624441

ABSTRACT

3D printing technologies have found several applications within the biomedical sector including in the fabrication of medical devices, advanced visualization, diagnosis planning and simulation of surgical procedures. One of the areas in which of 3D printing is anticipated to revolutionised is the manufacturing of implantable bioresorbable drug-eluting scaffolds (stents). The ability to customize and create personalised tailor-made bioresorbable scaffolds has the potential to help solve many of the challenges associated with stenting, such as inappropriate stent sizing and design, abolish late stent thrombosis and help artery growth; 3D printing offers a rapid prototyping and effective method of producing stents making customization of designs feasible. This review provides an overview of the subjects and summarizes the latest research in the 3D printing technologies employed for the design and fabrication of bioresorbable stents including materials with the required printable and mechanical properties. Finally, we present a regulatory perspective on the development and engineering of 3D printed implantable stents.


Subject(s)
Printing, Three-Dimensional , Stents , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...