Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
Heliyon ; 9(10): e20254, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37780763

ABSTRACT

A novel bis-phenylurea-based aliphatic amine (BPUA) was prepared via a facile synthetic route, and evaluated as a potential green organic corrosion inhibitor for carbon steel in 1.0 M HCl solutions. NMR spectroscopy experiments confirmed the preparation of the targeted structure. The corrosion inhibitory behavior of the prospective green compound was explored experimentally by electrochemical methods and theoretically by DFT-based quantum chemical calculations. Obtained results revealed an outstanding performance of BPUA, with efficiency of 95.1% at the inhibitor concentration of 50 mg L-1 at 25 °C. The novel compound has improved the steel resistivity and noticeably reduced the corrosion rate from 33 to 1.7 mils per year. Furthermore, the adsorption study elucidates that the mechanism of the corrosion inhibition activity obeys Langmuir isotherm with mixed physisorption/chemisorption modes for BPUA derivatives on the steel surface. Calculated Gibb's free energy of the adsorption process ranges from -35 to -37 kJ mol-1. The SEM morphology analysis validates the electrochemical measurements and substantiates the corrosion-inhibiting properties of BPUA. Additionally, the eco-toxicity assessment on human epithelial MCF-10A cells proved the environmental friendliness of the BPUA derivatives. Density functional theory (DFT) calculations correlated the inhibitor's chemical structure with the corresponding inhibitory behavior. Quantum descriptors disclosed the potentiality of BPUA adsorption onto the surface through the heteroatom-based functional groups and aromatic rings.

2.
Heliyon ; 9(10): e20304, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37810837

ABSTRACT

A biodegradable polysaccharide-based inhibitor is grafted with polyacrylamide (PAM) for oilfields' sweet corrosion. The green properties of agar and PAM were incorporated to synthesize an agar-grafted-PAM (AGGPAM) inhibitor. Electrochemical tests of Tafel and AC impedance, were used to determine the corrosion rate of carbon steel (C-steel) and protection efficiency in CO2-saturated 3.5 wt% NaCl solution. The surface morphology was characterized using FESEM coupled with EDX. Results demonstrated the promising performance of AGGPAM in improving steel resistivity, achieving 85% efficiency at 500 mg L-1 and reducing the corrosion rate from 33 to 4.9 mils per year at 25 °C. The electrochemical tests classified AGGPAM as a mixed-type inhibitor, yet with a larger potential to inhibit the cathodic hydrogen evolution. Kinetics study at a temperature of 50 °C revealed a deteriorated AGGPAM inhibition attributed to electrolyte diffusion through the weakly adsorbed AGGPAM film. Nevertheless, the AGGPAM-inhibited solution exhibited a corrosion rate of 26.7 mils per year at 50 °C, which is still lower than that of blank at 25 °C. The steel resistance was diminished from 1436 to 355 Ω cm2 at 50 °C. Implementing AGGPAM coating reduced the steel corrosion rate to 9.6 mils per year, achieving 71% efficiency. AGGPAM inhibitor toxicity was evaluated using ADMETlab, which predicted negligible hazardous impacts. Lastly, potentiostatic testing of steel with AGGPAM at an applied potential of 50 mV illustrated surface protection and decreased current over a prolonged time. Herein, the experimental investigation revealed the promising capabilities of AGGPAM as an efficient corrosion inhibitor in oilfields.

3.
ACS Omega ; 8(19): 16673-16686, 2023 May 16.
Article in English | MEDLINE | ID: mdl-37214734

ABSTRACT

Utilizing green corrosion inhibitors has been classified among the most efficient and economical mitigation practices against metallic degradation and failure. This study aims to integrate the features of green and complementary properties of polyepoxysuccinic acid (PESA) and polyacrylamide (PAM) for steel corrosion inhibition. A novel PESA-grafted-PAM (PESAPAM) has been first-ever synthesized in this research study and deployed as a corrosion inhibitor for C-steel in 1.0 M HCl solution. Eco-toxicity prediction confirmed the environmentally friendly properties acquired by the synthesized inhibitor. Electrochemical, kinetics, and surface microscopic studies were carried out to gain a holistic view of C-steel corrosion behavior with the PESAPAM. Furthermore, the performance of PESAPAM was compared with that of the pure PESA under the same testing conditions. Results revealed predominant inhibitive properties of PESAPAM with an inhibition efficiency (IE) reaching 90% at 500 mg·L-1 at 25 °C. Grafting PAM onto the PESA chain showed an overall performance improvement of 109% from IE% of 43 to 90%. Electrochemical measurements revealed a charge transfer-controlled corrosion mechanism and the formation of a thick double layer on the steel surface. The potentiodynamic study classified PESAPAM as a mixed-type inhibitor. Furthermore, the investigation of C-steel corrosion kinetics with the presence of PESAPAM predicted an activation energy of 85 kJ·mol-1, correlated with a physical adsorption behavior. Finally, performed scanning electron microscopy and energy-dispersive X-ray analyses confirmed the adsorption of PESA and PESAPAM, with superior coverage of PESAPAM onto the steel surface.

4.
Polymers (Basel) ; 14(24)2022 Dec 12.
Article in English | MEDLINE | ID: mdl-36559800

ABSTRACT

Scale formation causes major losses in oil wells, related to production and equipment damages. Thus, it is important to develop effective materials to prevent scale formation and inhibit any additional formation. One known environmentally friendly material with promising performance for scale inhibition is polyepoxysuccinic acid (PESA). However, the performance and further development of any scale treatment chemical is highly affected by its electronic structure and behavior. Thus, this paper aims to obtain insights into the kinetics and thermodynamics of the chemical reactions during scale inhibition by investigating the geometrical and electronic structure of PESA. Density Functional Theory (B3LYP/6-31 g (d)-lanl2dz) was used to study the structure of PESA, considering different forms of PESA and their corresponding binding affinities and chemical behaviors. The scale is represented as FeII ions, and PESA is modeled as (n = 1, and 2). Three conditions of PESA were considered: the standard form, the form with a modified electron donating group (R- = CH3-), and ammonium salt of PESA (M+ = NH4+). The results showed that PESA has a high binding affinity to FeII, comparable to known chelating agents, with the highest binding affinity for ammonium salt of PESA with the CH3- donating group (-1530 kJ/mol). The molecular orbitals (MO), electron affinity (EA), and charge analysis further explained the findings. The HOMO-LUMO gap and EA results revealed the high reactivity and thermodynamic stability of all forms of PESA. In addition, the ammonium salt form of PESA with the electron donating group performs better, as it has a greater overall negative charge in the compounds. Furthermore, the NH4+ cationic group tends to lower the value of the HOMO orbital, which increases the inhibition performance of PESA.

5.
Sci Rep ; 11(1): 4796, 2021 02 26.
Article in English | MEDLINE | ID: mdl-33637829

ABSTRACT

Pyrite scale formation is a critical problem in the hydrocarbon production industry; it affects the flow of hydrocarbon within the reservoir and the surface facilities. Treatments with inorganic acids, such as HCl, results in generation toxic hydrogen sulfide, high corrosion rates, and low dissolving power. In this work, the dissolution of pyrite scale is enhanced by the introduction of electrical current to aid the chemical dissolution. The electrolytes used in this study are chemical formulations mainly composed of diethylenetriamine-pentaacetic acid-potassium (DTPAK5) with potassium carbonate; diethylenetriamine pentaacetic acid sodium-based (DTPANa5), and L-glutamic acid-N, N-diacetic acid (GLDA). DTPA and GLDA have shown some ability to dissolve iron sulfide without generating hydrogen sulfide. The effect of these chemical formulations, disc rotational rate and current density on the electro-assisted dissolution of pyrite are investigated using Galvanostatic experiments at room temperature. The total iron dissolved of pyrite using the electrochemical process is more than 400 times higher than the chemical dissolution using the same chelating agent-based formulation and under the same conditions. The dissolution rate increased by 12-folds with the increase of current density from 5 to 50 mA/cm2. Acid and neutral formulations had better dissolution capacities than basic ones. In addition, doubling the rotational rate did not yield a significant increase in electro-assisted pyrite scale dissolution. XPS analysis confirmed the electrochemical dissolution is mainly due to oxidation of Fe2+ on pyrite surface lattice to Fe3+. The results obtained in this study suggest that electro-assisted dissolution is a promising technique for scale removal.

6.
Sci Rep ; 11(1): 817, 2021 Jan 12.
Article in English | MEDLINE | ID: mdl-33436997

ABSTRACT

Cost effective dust mitigation from surfaces is one of the challenges in various sectors. The reduction of dust adhesion on surfaces plays a vital role for dust mitigation from surfaces under the gravitational influence. Creating an avalanche effect on dusty surfaces improves the dust mitigation rate and provides an effective cleaning process. Hence, solution treatment of dust by low concentration hydrofluoric acid is considered towards reducing dust adhesion on glass surfaces. To increase the rate of dust mitigation, the avalanche influence is created by the higher density and larger size particles (5300 kg/m3 and ~ 50 µm) than the average size dust particles (2800 kg/m3 and 1.2 µm) via locating them in the top region of the dusty glass surfaces. Mitigation velocity of the dust particles is evaluated using a high-speed recording system and the tracker program. Findings revealed that solution treatment (curing) of the dust particles results in the formation of fluorine compounds, such as CaF2 and MgF2, on dust surfaces, which suppress dust adhesion on surfaces. OSHA Globally Harmonized System lists the fluorine compounds formed as environmentally non-harmful. Avalanche's influence results in dust mitigation at a smaller tilt angle of the glass surface (~ 52°) than that of the case with none-avalanche influence (63°). Area cleaned on the glass surface, via dust mitigation, is larger as the avalanche is introduced, which becomes more apparent for the solution treated dust particles. Dust mitigation under avalanche influence improves optical transmittance of the dusty glass samples by a factor of 98%.

7.
RSC Adv ; 11(16): 9586-9599, 2021 Mar 01.
Article in English | MEDLINE | ID: mdl-35423447

ABSTRACT

A new facile approach for preparing two nonfluorinated hybrid organic-inorganic siloxane/polydimethylsiloxane nanocomposite coatings for cotton fabrics is presented using two distinct silylating agents. The first coated fabric was prepared predominantly via trimethylsilyl modification using hexamethyldisilazane (HMDS) while higher amounts of trimethoxy(octadecyl)silane (TMOS) further enhanced the superhydrophobicity of the second coating matrix. Unlike HMDS with substituted silyl (Me3Si) groups, TMOS consists of hydrolysable trimethoxy silyl ((MeO)3Si) chemical groups that allowed for the formation of nanosilica with Si-O-Si linkages needed to foster stable coatings. After characterization and testing, these coated fabrics demonstrated varying responses to harsh solvents and thermal conditions. Both sets of coated fabrics exhibited unique capacities for self-cleaning and oil-water separation as superhydrophobic filters due to (a) their low surface energy silylated hybrid polysiloxane chemical groups, (b) their highly reduced surface wettability and (c) nanopatterned surface morphologies. In this study, coated superhydrophobic cotton fabrics revealed a higher static aqueous contact angle of more than 150° and sliding hysteresis angle of less than 5°. Coated fabrics with 30 mg TMOS/10 mg HMDS (CMF3) and 30 mg HMDS/10 mg TMOS (CTF3) exhibited optimal superhydrophobicity. Both fabrics also retained percentage separation efficiencies over 90% for both chloroform-water and toluene-water mixtures. However, CTF3 displayed with a recorded separation efficiency less than 90° after five filtration cycles.

8.
Sci Rep ; 10(1): 13812, 2020 08 14.
Article in English | MEDLINE | ID: mdl-32796894

ABSTRACT

Environmental dust is modified towards self-cleaning applications under the gravitational influence. Dust particles are collected in the local area of Dammam in Saudi Arabia and they are treated with a dilute hydrofluoric acid solution. The changes in chemical and adhesion characteristics of the dust particles prior and after the solution treatment are analyzed. Force of adhesion and work required to remove dust from hydrophobic and hydrophilic glass surfaces are assessed, separately, for solution treated and collected dust. We show that aqueous hydrofluoric acid solution treatment modifies some dust components while causing the formation of submicron cracks and nano/submicron porous/pillars like textures on the dust particles. The texture generated on dust surfaces after the solution treatment has a great influence on dust adhesion characteristics. Hence, the solution treated dust particles result in lower adhesion on hydrophobic and hydrophilic glass surfaces as compared to that of untreated dust. The gravitational force enables to remove solution treated dust from inclined glass surfaces, which becomes more apparent for hydrophobic surfaces.

9.
Bioinorg Chem Appl ; 2017: 7298351, 2017.
Article in English | MEDLINE | ID: mdl-28680373

ABSTRACT

Fly ash (FA) is a major industrial waste generated from power stations that add extra cost for proper disposal. Recent research efforts have consequently focused on developing ways to make use of FA in environmentally sound applications. This study, therefore, investigates the potential ability of raw fly ash (RFA) and polyelectrolyte-coated fly ash (PEFA) to remove cadmium (Cd) from polluted water. Using layer-by-layer approach, functionalized fly ash was coated with 20 layers from 0.03% (v/v) of cationic poly(diallyldimethylammonium chloride) (PDADMAC) and anionic polystyrene sulfonate (PSS) solutions. Both surface morphology and chemical composition of the adsorbent (PEFA) were characterized using Field-Emission Scanning Electron Microscope (FE-SEM), X-Ray Diffraction (XRD), Fourier-Transform Infrared (FTIR), and X-Ray Fluorescence (XRF) techniques. The effects of pH, adsorbent dosage, contact time, initial contaminant concentration, and mixing rate of the adsorption of Cd were also studied in batch mode experiments. Results of the study revealed that a 4.0 g/L dosage of PEFA removed around 99% of 2.0 mg/L of Cd in 15 min at 150 rpm compared to only 27% Cd removal achieved by RFA under the same conditions. Results also showed that adsorption by PEFA followed both Langmuir and Freundlich models with correlation coefficients of 98% and 99%, respectively.

10.
PLoS One ; 12(2): e0172218, 2017.
Article in English | MEDLINE | ID: mdl-28245225

ABSTRACT

In the present work, bismuth oxychloride nanoparticles-a light harvesting semiconductor photocatalyst-were synthesized by a facile hydrolysis route, with sodium bismuthate and hydroxylammonium chloride as the precursor materials. The as-synthesized semiconductor photocatalysts were characterized using X-ray diffraction analysis, Fourier transform infra-red spectroscopy, Raman spectroscopy, Field emission scanning electron microscopy, X-ray photoelectron spectroscopy and Photoluminescence spectroscopy techniques. The crystal structure, morphology, composition, and optical properties of these facile synthesized bismuth oxychloride nanoparticles (BiOCl NPs) were compared to those of traditional bismuth oxychloride. In addition, the photocatalytic performance of facile-synthesized BiOCl NPs and traditional BiOCl, as applied to the removal of hazardous organic dyes under visible light illumination, is thoroughly investigated. Our results reveal that facile-synthesized BiOCl NPs display strong UV-Vis light adsorption, improved charge carrier mobility and an inhibited rate of charge carrier recombination, when compared to traditional BiOCl. These enhancements result in an improved photocatalytic degradation rate of hazardous organic dyes under UV-Vis irradiance. For instance, the facile-synthesized BiOCl NPs attained 100% degradation of methylene blue and methyl orange dyes in approximately 30 mins under UV-Vis irradiation, against 55% degradation for traditional BiOCl under similar experimental conditions.


Subject(s)
Bismuth/chemistry , Nanoparticles , Organic Chemicals/chemistry , Semiconductors , Water Pollutants, Chemical/chemistry , Azo Compounds/chemistry , Catalysis , Hydrolysis , Light , Methylene Blue/chemistry , Photochemistry , Photoelectron Spectroscopy , Spectrophotometry, Ultraviolet , Spectroscopy, Fourier Transform Infrared , Spectrum Analysis, Raman , Ultraviolet Rays , Water Pollution , X-Ray Diffraction
11.
Environ Technol ; 38(23): 2949-2963, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28278784

ABSTRACT

Carbon nanotube (CNT) and graphene oxide (GO) as common nanostructures were modified with silver sulfide (Ag2S) using chemical vapor deposition. The raw and modified materials were tested for the removal of Dibenzothiophene (DBT) from a model fuel in batch mode adsorption experiments. The maximum adsorption capacities of DBT were 52.18 and 49.65 mg g-1, using CNT-Ag2S and GO-Ag2S, respectively. The adsorption isotherm was modeled using Freundlich, Langmuir and Temkin models using linear and non-linear regression. The squared correlation coefficient (R2) and HYBRID error function were used to determine the best adsorption model. IR spectroscopy was used to study the DBT adsorption mechanism, and it was found that the DBT molecules lie flat on the surface of the developed adsorbents. Significant improvement was achieved in the adsorption of DBT using CNT-Ag2S and GO-Ag2S, where the maximum adsorption capacity increased by 127% and 117% respectively, which indicates a stronger interaction between DBT and the modified adsorbents.


Subject(s)
Environmental Pollution/prevention & control , Gasoline/analysis , Metal Nanoparticles/chemistry , Silver Compounds/chemistry , Thiophenes/chemistry , Waste Disposal, Fluid/methods , Adsorption , Graphite/analysis , Nanotubes, Carbon/analysis , Oxides/analysis
12.
Sci Rep ; 6: 24308, 2016 Apr 14.
Article in English | MEDLINE | ID: mdl-27076199

ABSTRACT

Owing to recent climate changes, dust storms are increasingly common, particularly in the Middle East region. Dust accumulation and subsequent mud formation on solid surfaces in humid environments typically have adverse effects on surface properties such as optical transmittance, surface texture, and microhardness. This is usually because the mud, which contains alkaline and ionic species, adheres strongly to the surface, often through chemical bonds, and is therefore difficult to remove. In this study, environmental dust and the after-effects of mud formed on a polycarbonate sheet, which is commonly used as a protective glass in photovoltaic cells. Ionic compounds (OH(-)) are shown to significantly affect the optical, mechanical, and textural characteristics of the polycarbonate surface, and to increase the adhesion work required to remove the dry mud from the polycarbonate surface upon drying. Such ability to modify characteristics of the polycarbonate surface could address the dust/mud-related limitations of superhydrophobic surfaces.

13.
Sci Rep ; 5: 15833, 2015 Oct 30.
Article in English | MEDLINE | ID: mdl-26514102

ABSTRACT

Recent developments in climate change have increased the frequency of dust storms in the Middle East. Dust storms significantly influence the performances of solar energy harvesting systems, particularly (photovoltaic) PV systems. The characteristics of the dust and the mud formed from this dust are examined using various analytical tools, including optical, scanning electron, and atomic force microscopies, X-ray diffraction, energy spectroscopy, and Fourier transform infrared spectroscopy. The adhesion, cohesion and frictional forces present during the removal of dry mud from the glass surface are determined using a microtribometer. Alkali and alkaline earth metal compounds in the dust dissolve in water to form a chemically active solution at the glass surface. This solution modifies the texture of the glass surface, thereby increasing the microhardness and decreasing the transmittance of the incident optical radiation. The force required to remove the dry mud from the glass surface is high due to the cohesive forces that result from the dried mud solution at the interface between the mud and the glass. The ability altering the characteristics of the glass surface could address the dust/mud-related limitations of protective surfaces and has implications for efficiency enhancements in solar energy systems.

14.
Article in English | MEDLINE | ID: mdl-21279891

ABSTRACT

The removal of Arsenic (As (III)) ions from water using modified multi-walled carbon nanotubes (MCNTs) was demonstrated in this study. Results of the study showed that raw (non-modified) MCNTs have very poor efficiency in removing As (III) from water by conventional adsorption mechanisms. However, when MCNTs were modified with iron oxide (Fe-MCNTs), a significant improvement in the As (III) removal efficiency was observed. Results of the study also showed that Fe-MCNTs have much higher efficiency in removing As (III) than MCNTs modified with carboxyl group (COOH-MCNTs). Under the experimental conditions used in the study, about 77.5% of As (III) removal was achieved by the Fe-MCNTs, while COOH-MCNTs removed only 11% at pH 5. In addition, the adsorption kinetics of MCNTs indicated that there is a strong affinity of As (III) ions to the surface of the Fe-MCNTs.


Subject(s)
Arsenic/analysis , Environmental Restoration and Remediation/methods , Ferric Compounds/chemistry , Metal Nanoparticles/chemistry , Nanotubes, Carbon/chemistry , Water Pollutants, Chemical/analysis , Water Purification/methods , Adsorption , Arsenic/chemistry , Kinetics
15.
Article in English | MEDLINE | ID: mdl-20694880

ABSTRACT

Nanoparticles of zinc oxide semiconductor were applied for removal of toxic organic pollutants such as dyes (alizarin yellow GG) from wastewater using laser induced photocatalytic process. A special photoreactor was designed for this purpose using local resources. Laser enhanced photo degradation of alizarin yellow GG (AYGG) was carried out by irradiating the contaminated aqueous solution with a 355 nm radiation generated from third harmonic of Nd:YAG laser. The effect of different operational parameters such as the initial dyes concentration, the concentration of photocatalyst, laser irradiation time, laser energy and pH on photocatalytic degradation of the dyes was investigated. It was observed that pH and the initial dyes concentration has a significant role in the dyes removal process. Using the optimum conditions (parameters), almost 90% degradation was achieved by nano ZnO in a short span of time. The efficiency achieved in this work using nano ZnO was much higher than micro ZnO catalyst and using conventional custom made setups. This is a first study of its kind where laser and nano ZnO particles have been employed for removal of dyes from wastewater.


Subject(s)
Azo Compounds/radiation effects , Coloring Agents/radiation effects , Lasers, Solid-State , Metal Nanoparticles/chemistry , Salicylates/radiation effects , Water Pollutants, Chemical/radiation effects , Water Purification/methods , Zinc Oxide/chemistry , Azo Compounds/chemistry , Coloring Agents/chemistry , Kinetics , Photolysis , Salicylates/chemistry , Ultraviolet Rays , Waste Disposal, Fluid , Water Pollutants, Chemical/chemistry
16.
Anesth Analg ; 102(1): 151-5, 2006 Jan.
Article in English | MEDLINE | ID: mdl-16368821

ABSTRACT

In this prospective, randomized, double-blind, placebo-controlled study, we attempted to define the dose of succinylcholine that provides excellent intubation conditions in patients within 60 s during simulated rapid-sequence induction of anesthesia. Anesthesia was induced in 180 patients with 2 microg/kg fentanyl and 2 mg/kg propofol. After loss of consciousness, patients were randomly allocated to receive 0.3, 0.5, 1.0, 1.5, or 2.0 mg/kg succinylcholine or saline solution (control group). Tracheal intubation was performed 60 s later. A blinded investigator performed all laryngoscopies and graded intubating conditions. Intubating conditions were excellent in 0.0%, 43.3%, 60.0%, 63.3%, 80.0%, and 86.7% of patients after 0.0, 0.3, 0.5, 1.0, 1.5, and 2.0 mg/kg succinylcholine, respectively. The incidence of excellent intubating conditions was significantly more frequent (P < 0.001) in patients receiving succinylcholine than in the controls and in patients who received 2.0 mg/kg succinylcholine (P < 0.05) than in those who received 0.3 mg/kg succinylcholine. The calculated doses of succinylcholine (and their 95% confidence intervals) that are required to achieve excellent intubating conditions in 50% and 80% of patients at 60 s are 0.39 (0.29-0.51) mg/kg and 1.6 (1.2-2.0) mg/kg, respectively. It appears that there are no advantages to using doses of succinylcholine larger than 1.5 mg/kg.


Subject(s)
Intubation, Intratracheal/methods , Succinylcholine/administration & dosage , Adult , Dose-Response Relationship, Drug , Double-Blind Method , Drug Administration Schedule , Female , Humans , Intubation, Intratracheal/standards , Logistic Models , Male , Middle Aged , Succinylcholine/standards , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...