Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
PeerJ Comput Sci ; 9: e1422, 2023.
Article in English | MEDLINE | ID: mdl-37547420

ABSTRACT

Machine reading comprehension (MRC) is one of the most challenging tasks and active fields in natural language processing (NLP). MRC systems aim to enable a machine to understand a given context in natural language and to answer a series of questions about it. With the advent of bi-directional deep learning algorithms and large-scale datasets, MRC achieved improved results. However, these models are still suffering from two research issues: textual ambiguities and semantic vagueness to comprehend the long passages and generate answers for abstractive MRC systems. To address these issues, this paper proposes a novel Extended Generative Pretrained Transformers-based Question Answering (ExtGPT-QA) model to generate precise and relevant answers to questions about a given context. The proposed architecture comprises two modified forms of encoder and decoder as compared to GPT. The encoder uses a positional encoder to assign a unique representation with each word in the sentence for reference to address the textual ambiguities. Subsequently, the decoder module involves a multi-head attention mechanism along with affine and aggregation layers to mitigate semantic vagueness with MRC systems. Additionally, we applied syntax and semantic feature engineering techniques to enhance the effectiveness of the proposed model. To validate the proposed model's effectiveness, a comprehensive empirical analysis is carried out using three benchmark datasets including SQuAD, Wiki-QA, and News-QA. The results of the proposed ExtGPT-QA outperformed state of art MRC techniques and obtained 93.25% and 90.52% F1-score and exact match, respectively. The results confirm the effectiveness of the ExtGPT-QA model to address textual ambiguities and semantic vagueness issues in MRC systems.

2.
PLoS One ; 18(3): e0282567, 2023.
Article in English | MEDLINE | ID: mdl-36943833

ABSTRACT

Recently, the number of drones has increased, and drones' illegal and malicious use has become prevalent. The dangerous and wasteful effects are substantial, and the probability of attacks is very high. Therefore, an anomaly detection and protection system are needed. This paper aims to design and implement an intelligent anomaly detection system for the security of unmanned aerial vehicles (UAVs)/drones. The proposed system is heavily based on utilizing ICMetric technology to exploit low-level device features for detection. This technology extracts the accelerometer and gyroscope sensors' bias to create a unique number known as the ICMetric number. Hence, ICMetric numbers represent additional features integrated into the dataset used to detect drones. This study performs the classification using a deep neural network (DNN). The experimental results prove that the proposed system achieves high levels of detection and performance metrics.


Subject(s)
Technology , Unmanned Aerial Devices , Probability
3.
J Healthc Eng ; 2023: 1566123, 2023.
Article in English | MEDLINE | ID: mdl-36704578

ABSTRACT

Over the past few years, a tremendous change has occurred in computer-aided diagnosis (CAD) technology. The evolution of numerous medical imaging techniques has enhanced the accuracy of the preliminary analysis of several diseases. Magnetic resonance imaging (MRI) is a prevalent technology extensively used in evaluating the progress of the spread of malignant tissues or abnormalities in the human body. This article aims to automate a computationally efficient mechanism that can accurately identify the tumor from MRI images and can analyze the impact of the tumor. The proposed model is robust enough to classify the tumors with minimal training data. The generative variational autoencoder models are efficient in reconstructing the images identical to the original images, which are used in adequately training the model. The proposed self-learning algorithm can learn from the insights from the autogenerated images and the original images. Incorporating long short-term memory (LSTM) is faster processing of the high dimensional imaging data, making the radiologist's task and the practitioners more comfortable assessing the tumor's progress. Self-learning models need comparatively less data for the training, and the models are more resource efficient than the various state-of-art models. The efficiency of the proposed model has been assessed using various benchmark metrics, and the obtained results have exhibited an accuracy of 89.7%. The analysis of the progress of tumor growth is presented in the current study. The obtained accuracy is not pleasing in the healthcare domain, yet the model is reasonably fair in dealing with a smaller size dataset by making use of an image generation mechanism. The study would outline the role of an autoencoder in self-learning models. Future technologies may include sturdy feature engineering models and optimized activation functions that would yield a better result.


Subject(s)
Image Processing, Computer-Assisted , Magnetic Resonance Imaging , Humans , Image Processing, Computer-Assisted/methods , Algorithms , Diagnosis, Computer-Assisted
SELECTION OF CITATIONS
SEARCH DETAIL