Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Diabetes ; 72(11): 1641-1651, 2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37625134

ABSTRACT

Extracellular (e)ATP, a potent proinflammatory molecule, is released by dying/damaged cells at the site of inflammation and is degraded by the membrane ectonucleotidases CD39 and CD73. In this study, we sought to unveil the role of eATP degradation in autoimmune diabetes. We then assessed the effect of soluble CD39 (sCD39) administration in prevention and reversal studies in NOD mice as well as in mechanistic studies. Our data showed that eATP levels were increased in hyperglycemic NOD mice compared with prediabetic NOD mice. CD39 and CD73 were found expressed by both α- and ß-cells and by different subsets of T cells. Importantly, prediabetic NOD mice displayed increased frequencies of CD3+CD73+CD39+ cells within their pancreata, pancreatic lymph nodes, and spleens. The administration of sCD39 into prediabetic NOD mice reduced their eATP levels, abrogated the proliferation of CD4+- and CD8+-autoreactive T cells, and increased the frequency of regulatory T cells, while delaying the onset of T1D. Notably, concomitant administration of sCD39 and anti-CD3 showed a strong synergism in restoring normoglycemia in newly hyperglycemic NOD mice compared with monotherapy with anti-CD3 or with sCD39. The eATP/CD39 pathway plays an important role in the onset of T1D, and its targeting might represent a potential therapeutic strategy in T1D.

2.
Adv Mater ; 35(40): e2300812, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37357903

ABSTRACT

Immune therapeutics holds great promise in the treatment of type 1 diabetes (T1D). Nonetheless, their progress is hampered by limited efficacy, equipoise, or issues of safety. To address this, a novel and specific nanodelivery platform for T1D that targets high endothelial venules (HEVs) presented in the pancreatic lymph nodes (PLNs) and pancreas is developed. Data indicate that the pancreata of nonobese diabetic (NOD) mice and patients with T1D are unique in their expression of newly formed HEVs. Anti-CD3 mAb is encapsulated in poly(lactic-co-glycolic acid)-poly(ethylene glycol) nanoparticles (NPs), the surfaces of which are conjugated with MECA79 mAb that recognizes HEVs. Targeted delivery of these NPs improves accumulation of anti-CD3 mAb in both the PLNs and pancreata of NOD mice. Treatment of hyperglycemic NOD mice with MECA79-anti-CD3-NPs results in significant reversal of T1D compared to those that are untreated, treated with empty NPs, or provided free anti-CD3. This effect is associated with a significant reduction of T effector cell populations in the PLNs and a decreased production of pro-inflammatory cytokine in the mice treated with MECA79-anti-CD3-NPs. In summary, HEV-targeted therapeutics may be used as a means by which immune therapeutics can be delivered to PLNs and pancreata to suppress autoimmune diabetes effectively.


Subject(s)
Diabetes Mellitus, Type 1 , Humans , Mice , Animals , Diabetes Mellitus, Type 1/drug therapy , Mice, Inbred NOD , Pancreas
SELECTION OF CITATIONS
SEARCH DETAIL
...