Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Dalton Trans ; 48(19): 6564-6570, 2019 May 15.
Article in English | MEDLINE | ID: mdl-31012889

ABSTRACT

Flexible metal-organic frameworks (MOFs) exhibit large potential as next-generation materials in areas such as gas sensing, gas separation and mechanical damping. By using a mixed metal approach, we report how the stimuli reponsive phase transition of flexible pillared-layered MOFs can be tuned over a wide range. Different Cu2+ to Zn2+ metal ratios are incorporated into the materials by using a simple solvothermal approach. The properties of the obtained materials are probed by differential scanning calorimetry and CO2 sorption measurements, revealing stimuli responsive behaviour as a function of metal ratio. Pair distribution functions derived from X-ray total scattering experiments suggest a distortion of the M2 paddlewheel as a function of the Cu content. We rationalize these phenomena by the different distortion energies of Cu2+ and Zn2+ ions to deviate from the square pyramidal structure of the relaxed paddlewheel node. Our work follows on from the large interest in tuning and understanding the materials properties of flexible MOFs, highlighting the large number of parameters that can be used for the targeted manipulation and design of properties of these fascinating materials.

2.
J Am Chem Soc ; 135(30): 10998-1005, 2013 Jul 31.
Article in English | MEDLINE | ID: mdl-23672307

ABSTRACT

Besides conventional approaches for regulating in-coming molecules for gas storage, separation, or molecular sensing, the control of molecular release from the pores is a prerequisite for extending the range of their application, such as drug delivery. Herein, we report the fabrication of a new porous coordination polymer (PCP)-based composite consisting of a gold nanorod (GNR) used as an optical switch and PCP crystals for controlled molecular release using light irradiation as an external trigger. The delicate core-shell structures of this new platform, composed of an individual GNR core and an aluminum-based PCP shell, were achieved by the selective deposition of an aluminum precursor onto the surface of GNR followed by the replication of the precursor into aluminum-based PCPs. The mesoscopic structure was characterized by electron microscopy, energy dispersive X-ray elemental mapping, and sorption experiments. Combination at the nanoscale of the high storage capacity of PCPs with the photothermal properties of GNRs resulted in the implementation of unique motion-induced molecular release, triggered by the highly efficient conversion of optical energy into heat that occurs when the GNRs are irradiated into their plasmon band. Temporal control of the molecular release was demonstrated with anthracene as a guest molecule and fluorescent probe by means of fluorescence spectroscopy.


Subject(s)
Gold/chemistry , Light , Nanocomposites/chemistry , Nanotubes/chemistry , Photochemical Processes , Polymers/chemistry , Biocompatible Materials/chemistry , Nanofibers/chemistry , Piperidones/chemistry , Porosity
SELECTION OF CITATIONS
SEARCH DETAIL
...