Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Food Sci Nutr ; 12(5): 3483-3491, 2024 May.
Article in English | MEDLINE | ID: mdl-38726429

ABSTRACT

Acacia nilotica L., also known as babul, belonging to the Fabaceae family and the Acacia genus, is typically used for ornamental purposes and also as a medicinal plant found in tropical and subtropical areas. This plant is a rich source of bioactive compounds. The current study aimed to elucidate the hypoglycemic, anti-inflammatory, and neuroprotective potential of A. nilotica's crude methanolic extract. The results of the in vitro antidiabetic assay revealed that methanolic extract of A. nilotica inhibited the enzyme α-glucosidase (IC50: 33 µg mL-1) and α-amylase (IC50: 17 µg mL-1) in a dose-dependent manner. While in the anticholinesterase enzyme inhibitory assay, maximum inhibition was shown by the extract against acetylcholinesterase (AChE) (637.01 µg mL-1) and butyrylcholinesterase (BChE) (491.98 µg mL-1), with the highest percent inhibition of 67.54% and 71.50% at 1000 µg mL-1, respectively. This inhibitory potential was lower as compared to the standard drug Galantamine that exhibited 82.43 and 89.50% inhibition at the same concentration, respectively. Moreover, the methanolic extract of A. nilotica also significantly inhibited the activities of cyclooxygenase 2 (COX-2) and 5-lipoxygenase (5-LOX) in a concentration-dependent manner. The percent inhibitory activity of 5-LOX and COX-2 ranged from 42.47% to 71.53% and 43.48% to 75.22%, respectively. Furthermore, in silico, in vivo, and clinical investigations must be planned to validate the above-stated bioactivities of A. nilotica.

2.
Food Sci Nutr ; 12(3): 1465-1478, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38455210

ABSTRACT

In the Mediterranean diet, olive oil serves as the predominant fat source and has been linked to a decreased risk of mortality related to cardiovascular diseases (CVD). Still, there is no conclusive evidence correlating olive oil consumption to CVD. The aim of this study is to assess the global research, current research trends, and knowledge mapping related to the correlation between the consumption of olive oil and CVD using bibliometric analysis. On August 19, 2023, a title-specific literature search was conducted on the Scopus database using the search terms "olive oil" and "cardiovascular disease" with a date range of the past 50 years. Subsequently, bibliometric tools such as VOSviewer and Bibliometrix were employed to analyze and evaluate the obtained documents. The search yielded (n = 429) publications and showed an upward trend in the annual publication count over the last five decades. The publication number exhibited a gradual increase with a rate of 5.55%. The results also indicated that 2530 authors, 759 institutions, 47 countries, and 223 journals have publications in this research domain. The present bibliometric study will be a valuable research reference for describing the worldwide research patterns concerning the relationship between olive oil and CVD during the past 50 years. In the future, the application of olive oil for the treatment of CVDs may be an emerging research trend. Apart from this, collaborations among authors, countries, and organizations are expected.

3.
Food Sci Nutr ; 12(2): 675-693, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38370049

ABSTRACT

Reactive oxygen species (ROS) are produced under normal physiological conditions and may have beneficial and harmful effects on biological systems. ROS are involved in many physiological processes such as differentiation, proliferation, necrosis, autophagy, and apoptosis by acting as signaling molecules or regulators of transcription factors. In this case, maintaining proper cellular ROS levels is known as redox homeostasis. Oxidative stress occurs because of the imbalance between the production of ROS and antioxidant defenses. Sources of ROS include the mitochondria, auto-oxidation of glucose, and enzymatic pathways such as nicotinamide adenine dinucleotide phosphate reduced (NAD[P]H) oxidase. The possible ROS pathways are NF-κB, MAPKs, PI3K-Akt, and the Keap1-Nrf2-ARE signaling pathway. This review covers the literature pertaining to the possible ROS pathways and strategies to inhibit them. Additionally, this review summarizes the literature related to finding ROS inhibitors.

4.
Saudi Pharm J ; 31(12): 101868, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38033748

ABSTRACT

Objective: Traditionally, Olea ferruginea Royle (Oleaceae) has been used as a painkiller and antidiabetic in various ailments. To provide a scientific background to this folklore the current study was designed to anti-inflammatory and antidiabetic effects of one of the isolated compound from this plant. Methods: Ferruginan A was isolated from the ethyl acetate extract of Olea ferruginea bark. This isolated molecule was subjected to in-vitro anti-inflammatory and antidiabetic effects using HRBCs and glucose uptake tests. The compound was also tested for molecular docking and ADMET study. Results: Regarding the anti-inflammatory effect, the tested compound demonstrated a 69.82 % inhibition at a concentration of 100 µg/mL, while the Ferruginan A (100 µl/mL) increased the uptake of glucose (3.79-71.86 %) in the yeast cell. Similarly, the zone of inhibition values of Ferruginan A (24.98 mm) against Escherichia coli were found to be comparable to standard (Imipenem: 31.09 mm). The mechanism of antidiabetic and anti-inflammatory effects was explored by using docking simulations performed on four molecular targets related to diabetes and inflammation. The results showed that the isolated compound may act as an antidiabetic agent by inhibiting the 5' Adenosine monophosphate-activated protein kinase (AMPK). While it also showed inhibition of anti-inflammatory targets COX-1, COX-2, and Tumor necrosis factor alpha (TNF-α). The ADMET prediction study revealed that isolated compound possesses favorable ADMET profile. Conclusion: It was concluded that Ferruginan A might be a significant anti-inflammatory and antidiabetic molecule.

5.
Ultrason Sonochem ; 98: 106534, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37515910

ABSTRACT

Ultrasound technique is one of the green technologies that is being utilized widely for varying food processes. Our aim in this study was to carry out ultrasonication, pasteurization and chemical preservation (Potassium metabisulfite) techniques on a carrot-orange juice blend. Additionally, the effect of these treatments on the storage period of about 21 days was also determined. The study displayed an array of results under the effect of different treatments. Throughout the storage period of 21 days' significant results were presented by the carrot juice blend subjected to the ultrasound technique (25 min) giving the highest values for total phenolic content (25.56 ± 1.29 mg GAE/100 mL), total antioxidant activity (573.48 ± 2.29 mg Trolox /100 mL), DPPH (32.32 ± 1.83 %) and reducing power (45.45 ± 1.92 mg AAE/100 mL) with least deterioration, followed by the blends treated with potassium metabisulfite (KMS) and pasteurization. The physicochemical analysis showed a non-significant effect of treatments on pH and total soluble solids (oBrix) of carrot-orange juice blends whereas, the changes in color parameters L*, a* and b* were noted to show changes in treated blends. Similarly, the results for the GC-MS quantification of volatile compounds displayed the highest concentrations in the ultrasonicated blends as compared to other techniques. The peak quantity was obtained for the hexanal (9903.43 ± 7.61 µg.kg-1) followed by 3-Methylbutanal (2638.7 ± 5.44 µg.kg-1), terpinolene (2337.16 ± 5.28 µg.kg-1), elemicin (2198.28 ± 5.28 µg.kg-1), myristicin (1936.62 ± 6.72 µg.kg-1). The use of sonication can effectively enhance the nutritional qualities of juice, as perceived by consumers.


Subject(s)
Citrus sinensis , Daucus carota , Antioxidants/pharmacology , Antioxidants/analysis , Citrus sinensis/chemistry , Daucus carota/chemistry , Fruit and Vegetable Juices/analysis , Pasteurization
6.
Crit Rev Food Sci Nutr ; 62(10): 2683-2706, 2022.
Article in English | MEDLINE | ID: mdl-33327732

ABSTRACT

Saffron (Crocus sativus L., family Iridaceae) is used traditionally for medicinal purpose in Chinese, Ayurvedic, Persian and Unani medicines. The bioactive constituents such as apocarotenoids, monoterpenoids, flavonoids, phenolic acids and phytosterols are widely investigated in experimental and clinical studies for a wide range of therapeutic effects, especially on the nervous system. Some of the active constituents of saffron have high bioavailability and bioaccessibility and ability to pass the blood-brain barrier. Multiple preclinical and clinical studies have supported neuroprotective, anxiolytic, antidepressant, learning and memory-enhancing effect of saffron and its bioactive constituents (safranal, crocin, and picrocrocin). Thus, this plant and its active compounds could be a beneficial medicinal food ingredient in the formation of drugs targeting nervous system disorders. This review focuses on phytochemistry, bioaccessibility, bioavailability, and bioactivity of phytochemicals in saffron. Furthermore, the therapeutic effect of saffron against different nervous system disorders has also been discussed in detail.


Subject(s)
Crocus , Antidepressive Agents , Crocus/chemistry , Flavonoids , Phytochemicals/chemistry , Plant Extracts/chemistry , Plant Extracts/pharmacology
7.
Crit Rev Food Sci Nutr ; 62(22): 6034-6054, 2022.
Article in English | MEDLINE | ID: mdl-33703960

ABSTRACT

Over the past decade, the gut microbiota has emerged as an important frontier in understanding the human body's homeostasis and the development of diseases. Gut flora in human beings regulates various metabolic functionalities, including enzymes, amino acid synthesis, bio-transformation of bile acid, fermentation of non-digestible carbohydrates (NDCs), generation of indoles and polyamines (PAs), and production of short-chain fatty acids (SCFAs). Among all the metabolites produced by gut microbiota, SCFAs, the final product of fermentation of dietary fibers by gut microbiota, receive lots of attention from scientists due to their pharmacological and physiological characteristics. However, the molecular mechanisms underlying the role of SCFAs in the interaction between diet, gut microbiota, and host energy metabolism is still needed in-depth research. This review highlights the recent biotechnological advances in applying SCFAs as important metabolites to treat various diseases and maintain colonic health.


Subject(s)
Fatty Acids, Volatile , Gastrointestinal Microbiome , Diet , Dietary Fiber , Energy Metabolism/physiology , Fatty Acids, Volatile/metabolism , Gastrointestinal Microbiome/physiology , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...