Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sensors (Basel) ; 23(21)2023 Nov 02.
Article in English | MEDLINE | ID: mdl-37960625

ABSTRACT

Collaborative robots (cobots) have largely replaced conventional industrial robots in today's workplaces, particularly in manufacturing setups, due to their improved performance and intelligent design. In the framework of Industry 5.0, humans are working alongside cobots to accomplish the required level of automation. However, human-robot interaction has brought up concerns regarding human factors (HF) and ergonomics. A human worker may experience cognitive stress as a result of cobots' irresponsive nature in unpredictably occurring situations, which adversely affects productivity. Therefore, there is a necessity to measure stress to enhance a human worker's performance in a human-robot collaborative environment. In this study, factory workers' mental workload was assessed using physiological, behavioural, and subjective measures. Electroencephalography (EEG) and functional near-infrared spectroscopy (fNIRS) signals were collected to acquire brain signals and track hemodynamic activity, respectively. The effect of task complexity, cobot movement speed, and cobot payload capacity on the mental stress of a human worker were observed for a task designed in the context of a smart factory. Task complexity and cobot speed proved to be more impactful. As physiological measures are unbiased and more authentic means to estimate stress, eventually they may replace the other conventional measures if they prove to correlate with the results of traditional ones. Here, regression and artificial neural networks (ANN) were utilised to determine the correlation between physiological data and subjective and behavioural measures. Regression performed better for most of the targets and the best correlation (rsq-adj = 0.654146) was achieved for predicting missed beeps, a behavioural measure, using a combination of multiple EEG and fNIRS predictors. The k-nearest neighbours (KNN) algorithm was used to evaluate the accuracy of correlation between traditional measures and physiological variables, with the highest accuracy of 77.8% achieved for missed beeps as the target. Results show that physiological measures can be more insightful and have the tendency to replace other biased parameters.


Subject(s)
Brain , Workload , Humans , Hemodynamics , Neural Networks, Computer , Cognition
2.
Sensors (Basel) ; 23(8)2023 Apr 12.
Article in English | MEDLINE | ID: mdl-37112279

ABSTRACT

The last decade saw the emergence of highly autonomous, flexible, re-configurable Cyber-Physical Systems. Research in this domain has been enhanced by the use of high-fidelity simulations, including Digital Twins, which are virtual representations connected to real assets. Digital Twins have been used for process supervision, prediction, or interaction with physical assets. Interaction with Digital Twins is enhanced by Virtual Reality and Augmented Reality, and Industry 5.0-focused research is evolving with the involvement of the human aspect in Digital Twins. This paper aims to review recent research on Human-Centric Digital Twins (HCDTs) and their enabling technologies. A systematic literature review is performed using the VOSviewer keyword mapping technique. Current technologies such as motion sensors, biological sensors, computational intelligence, simulation, and visualization tools are studied for the development of HCDTs in promising application areas. Domain-specific frameworks and guidelines are formed for different HCDT applications that highlight the workflow and desired outcomes, such as the training of AI models, the optimization of ergonomics, the security policy, task allocation, etc. A guideline and comparative analysis for the effective development of HCDTs are created based on the criteria of Machine Learning requirements, sensors, interfaces, and Human Digital Twin inputs.


Subject(s)
Artificial Intelligence , Augmented Reality , Humans , Computer Simulation , Ergonomics , Industry
3.
Sensors (Basel) ; 20(16)2020 Aug 05.
Article in English | MEDLINE | ID: mdl-32764405

ABSTRACT

Electricity demand is rising due to industrialisation, population growth and economic development. To meet this rising electricity demand, towns are renovated by smart cities, where the internet of things enabled devices, communication technologies, dynamic pricing servers and renewable energy sources are integrated. Internet of things (IoT) refers to scenarios where network connectivity and computing capability is extended to objects, sensors and other items not normally considered computers. IoT allows these devices to generate, exchange and consume data without or with minimum human intervention. This integrated environment of smart cities maintains a balance between demand and supply. In this work, we proposed a closed-loop super twisting sliding mode controller (STSMC) to handle the uncertain and fluctuating load to maintain the balance between demand and supply persistently. Demand-side load management (DSLM) consists of agents-based demand response (DR) programs that are designed to control, change and shift the load usage pattern according to the price of the energy of a smart grid community. In smart grids, evolved DR programs are implemented which facilitate controlling of consumer demand by effective regulation services. The DSLM under price-based DR programs perform load shifting, peak clipping and valley filling to maintain the balance between demand and supply. We demonstrate a theoretical control approach for persistent demand control by dynamic price-based closed-loop STSMC. A renewable energy integrated microgrid scenario is discussed numerically to show that the demand of consumers can be controlled through STSMC, which regulates the electricity price to the DSLM agents of the smart grid community. The overall demand elasticity of the current study is represented by a first-order dynamic price generation model having a piece-wise linear price-based DR program. The simulation environment for this whole scenario is developed in MATLAB/Simulink. The simulations validate that the closed-loop price-based elastic demand control technique can trace down the generation of a renewable energy integrated microgrid.

SELECTION OF CITATIONS
SEARCH DETAIL
...