Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 18(11): e0286349, 2023.
Article in English | MEDLINE | ID: mdl-37910530

ABSTRACT

OBJECTIVE: Berberis lycium is an indigenous plant of Pakistan that is known for its medicinal properties. In the current study, we investigated the anti-Alzheimer's effect of berberine isolated from Berberis lycium. METHODS: Root extract of B. lycium was subjected to acetylcholinesterase inhibition assay and column chromatography for bioassays guided isolation of a compound. The neuroprotective and memory improving effects of isolated compound were evaluated by aluminium chloride induced Alzheimer's disease rat model, elevated plus maze (EPM) and Morris water maze (MWM) tests., Levels of dopamine and serotonin in rats brains were determined using HPLC. Moreover, western blot and docking were performed to determine interaction between berberine and ß-secretase. RESULTS: During fractionation, ethyl acetate and methanol (3:7) fraction was collected from solvent mixture of ethyl acetate and methanol. This fraction showed the highest anti-acetylcholinesterase activity and was alkaloid positive. The results of TLC and HPLC analysis indicated the presence of the isolated compound as berberine. Additionally, the confirmation of isolated compound as berberine was carried out using FTIR and NMR analysis. In vivo EPM and MWM tests showed improved memory patterns after berberine treatment in Alzheimer's disease model. The levels of dopamine, serotonin and activity of antioxidant enzymes were significantly (p<0.05) enhanced in brain tissue homogenates of berberine treated group. This was supported by decreased expression of ß-secretase in berberine treated rat brain homogenates and good binding affinity of berberine with ß-secretase in docking studies. Binding energies for interaction of ß-secretase with berberine and drug Rivastigmine is -7.0 kcal/mol and -5.8 kcal/mol respectively representing the strong interactions. The results of docked complex of secretase with berberine and Rivastigmine was carried out using Gromacs which showed significant stability of complex in terms of RMSD and radius of gyration. Overall, the study presents berberine as a potential drug against Alzheimer's disease by providing evidence of its effects in improving memory, neurotransmitter levels and reducing ß-secretase expression in the Alzheimer's disease model.


Subject(s)
Alzheimer Disease , Berberine , Berberis , Lycium , Neuroprotective Agents , Rats , Animals , Alzheimer Disease/chemically induced , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Berberine/pharmacology , Berberine/therapeutic use , Berberis/chemistry , Berberis/metabolism , Aluminum Chloride , Lycium/metabolism , Molecular Docking Simulation , Rivastigmine/pharmacology , Rivastigmine/therapeutic use , Acetylcholinesterase/metabolism , Amyloid Precursor Protein Secretases/metabolism , Dopamine , Methanol , Serotonin/therapeutic use , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use
2.
Biomed Res Int ; 2023: 1725638, 2023.
Article in English | MEDLINE | ID: mdl-36654869

ABSTRACT

Phoenix dactylifera is known for medicinal importance due to its antioxidant, antidiabetic, antidepressant, and anti-inflammatory properties. This study is aimed at evaluating the effect of P. dactylifera seeds to cure Alzheimer's disease (AD). AD was induced in the rats with streptozotocin + aluminium chloride followed by treatment of methanolic extract of P. dactylifera seeds. The blood glucose levels were determined at regular intervals, which showed a prominent decrease in the extracts treated group. Behavior tests, including the Elevated Plus Maze (EPM) test and Morris Water Maze (MWM) test, were used to evaluate memory patterns in rats. The results indicated that extract-treated rats significantly improved memory behavior compared to the diseased group. After dissection, the serum electrolytes, antioxidant enzymes, and choline esterase enzymes were measured in different organs. The serum parameters creatinine, urea, and bilirubin increased after extract treatment. Similarly, the level of antioxidant enzymes like peroxidases (POD), glutathione (GSH), catalase (CAT), superoxide dismutase (SOD), and thiobarbituric acid reactive substance (TBARS) in the extract-treated group showed improved results that were close to the normal control group. The enzyme (lipase, insulin, amylase, and acetylcholine) levels were found enhanced in extract groups as compared to diseased rats. High-performance liquid chromatography (HPLC) was used to determine the level of dopamine and serotonin neurotransmitters, which were increased significantly for P. dactylifera seeds with values of 0.18 µg/mg tissue and 0.56 µg/mg tissue, respectively. Overall, results showed that P. dactylifera seeds proved to be quite efficient in improving the memory and behavior of treated rats. The antioxidants and enzymes were also increased; therefore, it may be a potential candidate for treating AD.


Subject(s)
Alzheimer Disease , Phoeniceae , Rats , Animals , Antioxidants/pharmacology , Antioxidants/metabolism , Phoeniceae/chemistry , Streptozocin/pharmacology , Aluminum Chloride/pharmacology , Rats, Wistar , Alzheimer Disease/chemically induced , Alzheimer Disease/drug therapy , Plant Extracts/pharmacology , Plant Extracts/chemistry , Glutathione/metabolism , Oxidative Stress
3.
Front Chem ; 10: 992701, 2022.
Article in English | MEDLINE | ID: mdl-36226116

ABSTRACT

The crystal structure of N-((4-acetylphenyl)carbamothioyl)pivalamide (3) was synthesized by inert refluxing pivaloyl isothiocyanate (2) and 4-aminoacetophenone in dry acetone. The spectroscopic characterization (1H-NMR, 13CNMR, FT-IR) and single crystal assays determined the structure of synthesized compound (3). Systematic experimental and theoretical studies were conducted to determine the molecular characteristics of the synthesized crystal. The biological examination of (3) was conducted against a variety of enzymes i.e., acetyl cholinesterase (AChE), butyl cholinesterase (BChE), alpha amylase, and urease enzyme were evaluated. The crystal exhibited approximately 85% enzyme inhibition activity against BChE and AChE, but only 73.8 % and 57.9% inhibition activity against urease and alpha amylase was observed respectively. The theoretical calculations were conducted using density functional theory studies (DFTs) with the 6-31G (d, p) basis set and B3LYP functional correlation. The Frontier molecular orbital analysis revealed that the HOMO/LUMO energy gap was smaller, which corresponds to the molecule's reactivity. In terms of reactivity, the chemical softness value was found to be in good agreement with experimental values. In Crystal structure analysis, the intramolecular N-H•••O hydrogen bond generates a S 6) ring motif and N-H•••O interactions exist in crystal structure between the centroids of neighboring parallel aromatic (C4-C9) rings with a centroid to centroid distance of 3.9766 (7)Å. These intermolecular interactions were useful in structural stabilization. The Hirshfeld surfaces and their related two-dimensional fingerprint plots were used for thorough investigation of intermolecular interactions. According to Hirshfeld surface analysis of the crystal structure the most substantial contributions to the crystal packing are from H ••• O and H ••• N/N ••• H interactions. Molecular docking studies were conducted to evaluate the binding orientation of synthesized crystal with multiple targets. The compound exhibited stronger interactions with AChE and BChE with binding energies of -7.5 and -7.6 kcal/mol, respectively. On the basis of in-vitro and in-silico findings, it is deduced that N-((4-acetylphenyl)carbamothioyl)pivalamide 3) possesses reactive and potent multiple target inhibitory properties.

SELECTION OF CITATIONS
SEARCH DETAIL
...