Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-38393581

ABSTRACT

Chitinases, a glycosyl hydrolase family 18 members, have a wide distribution in both prokaryotes and eukaryotes, including humans. Regardless of the absence of endogenous chitin polymer, various chitinases and chitinase-like proteins (CLPs) have been reported in mammals. However, several other carbohydrate polymers, such as hyaluronic acid and heparan sulfate, show structural similarities with chitin, which could be a potential target of chitinase and CLPs. Heparan sulfate is part of the integral membrane proteins and involves in cell adherence and migration. Hence, to demonstrate the effect of chitinase on cancer cell progression, we selected two chitinases from Serratia marcescens, ChiB and ChiC, which function as exo- and endo-chitinase, respectively. The ChiB and ChiC proteins were produced recombinantly by cloning chiB and chiC genes from Serratia marcescens. The cell viability of the Michigan Cancer Foundation-7 (MCF-7) cells was studied using different concentrations of the purified recombinant proteins. Cell viability assay was performed using 3-(4, 5-dimethyl thiazolyl-2)-2, 5-diphenyltetrazolium bromide and water-soluble tetrazolium salt, and the effect of ChiB and ChiC on cell proliferation was studied by clonogenic assay. The cell migration study was analysed by wound healing, transwell migration, and invasion assays. Cell cycle analysis of propidium iodide-stained cells and cell proliferation markers such as pERK1/2, pAKT, and SMP30 were also done. It was observed that both ChiB and ChiC were able to impede cell viability, cell migration, and invasion significantly. These observations and our in silico molecular docking analysis suggest that ChiC is a potential anticancer agent and is more efficient than ChiB. Since the ChiC is able to inhibit both cancer cell proliferation and migration, it could be a potential candidate for the treatment of metastatic cancer.

2.
J Biol Chem ; 298(4): 101772, 2022 04.
Article in English | MEDLINE | ID: mdl-35218775

ABSTRACT

Dengue is one of the most dominant arthropod-borne viral diseases, infecting at least 390 million people every year throughout the world. Despite this, there is no effective treatment against dengue, and the only available vaccine has already been withdrawn owing to the significant adverse effects. Therefore, passive immunotherapy using monoclonal antibodies is now being sought as a therapeutic option. To date, many dengue monoclonal antibodies have been identified, most of which are serotype-specific, and only a few of which are cross-reactive. Furthermore, antibodies that cross-react within serotypes are weakly neutralizing and frequently induce antibody-dependent enhancement, which promotes viral entry and replication. Therefore, broadly neutralizing antibodies with no risk of antibody-dependent enhancement are required for the treatment of dengue. Here, we developed a single-chain variable fragment (scFv) antibody from an anti-fusion loop E53 antibody (PDB: 2IGF). We introduced previously predicted favorable complementarity-determining region (CDR) mutations into the gene encoding the scFv antibody for affinity maturation, and the resultant variants were tested in vitro against the highly conserved fusion and bc epitope of the dengue virus envelope protein. We show some of these scFv variants with two to three substitution mutations in three different CDRs possess affinity constants (KD) ranging from 20 to 200 nM. The scFv-mutant15, containing D31L, Y105W, and S227W substitutions, showed the lowest affinity constant, (KD = 24 ± 7 nM), approximately 100-fold lower than its parental construct. We propose that the scFv-derivative antibody may be a good candidate for the development of an effective and safe immunotherapy.


Subject(s)
Antibodies, Viral , Dengue Virus , Dengue , Epitopes , Single-Chain Antibodies , Antibodies, Monoclonal/immunology , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Dengue/therapy , Dengue Virus/immunology , Epitopes/immunology , Humans , Single-Chain Antibodies/genetics , Single-Chain Antibodies/immunology , Single-Chain Antibodies/therapeutic use , Viral Envelope Proteins/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...