Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Arch Microbiol ; 204(5): 250, 2022 Apr 11.
Article in English | MEDLINE | ID: mdl-35411473

ABSTRACT

Microbial exopolysaccharides (EPS) have gained high scientific concern due to their exceptional physicochemical features and high industrial applicability. Owing to their biotechnological importance, the present study was designed to screen and isolate the EPS-producing Bacillus strains based on their growth potential on specific media and colony morphologies. The bacterial isolates Bacillus subtilis Bs1-01, Bacillus licheniformis Bl1-02, and Bacillus brevis Bb1-04 showed excellent EPS production due to their shortened lag phase and abundant biomass production. Shake-flask fermentation valued the maximum production yield of 50.19 ± 1.14 g/L by Bl1-02 after 72 h incubation (about 3.40 times higher than that of Bacillus thuringiensis Bt1-05). The basic component analysis revealed the improved amount of total carbohydrate, reducing sugar ends, and protein contents by Bl1-02 strain. Structural characteristics and functional groups of the EPS characterized by Fourier transform infrared spectroscopy demonstrated that all EPS were in close agreement to each other due to the presence of similar chemical bonds and functional groups. EPS from Bl1-02 strain showed stronger and more stable bio-emulsifying and hygroscopicity activities (12.23%). The crude EPS exhibited potent antioxidant properties which were examined against reducing potential (H2O2 scavenging) and total antioxidant tests. Among bio-flocculation activities of EPS at different concentrations, Bs1-01 strain produced EPS at a concentration of 60 mg/mL was observed to show the maximum value of 79.20%. In conclusion, the EPS from marine Bacillus strains showed excellent functional properties suggesting potential industrial applications that demand separate investigations.


Subject(s)
Bacillus licheniformis , Bacillus , Antioxidants/metabolism , Bacillus/chemistry , Bacillus licheniformis/metabolism , Hydrogen Peroxide/metabolism , Polysaccharides, Bacterial
2.
Int J Biol Macromol ; 151: 984-992, 2020 May 15.
Article in English | MEDLINE | ID: mdl-31733253

ABSTRACT

Exopolysaccharides (EPS) are microbially-originated, complex biosynthetic polymers, mainly carbohydrates in nature. They have gained attention of modern researches due to their novel physicochemical characteristics. However, the development of cost-effective strategies to improve the EPS yield, remains a challenge. In this study, cost-effective EPS production was carried out from B. licheniformis in solid state fermentation of mango peels substrate with waste-to-value theme. Initially, B. licheniformis was exposed to ultraviolet (UV) radiations of short wavelength which significantly improved the EPS yield (from 3.4 to 4.6 g/L). The highest EPS producing mutant strain (B. licheniformis MS3) was further proceeded for yield optimization using RSM-CCD approach. Optimization improved the yield >3.2-folds (from 4.6 to 15.6 g/L). The optimally yielded fraction was characterized using HPLC, FT-IR and SEM analyses. HPLC revealed the hetero-polymeric nature of EPS containing mannose (20.60%), glucose (46.80%), and fructose (32.58%) subunits. FT-IR spectroscopy revealed the presence of hydroxyl and carboxyl functional groups, and glycosidic linkages among monosaccharides. SEM microstructure showed that EPS comprise smoother surface with less porosity. Studies on functional characteristics revealed the presence of hydrophilic moieties among EPS with moderate water (105.3%) and oil (86.3%) uptake capacity. The EPS exhibited excellent emulsifying properties showed good stability against all hydrocarbons/oils tested. In conclusion, the cost-effective EPS production with multifunctional properties, this study may be valuable for various biochemical and biotechnological sectors.


Subject(s)
Bacillus licheniformis/chemistry , Polysaccharides, Bacterial/chemistry , Bacillus licheniformis/metabolism , Emulsions , Fermentation , Metabolic Engineering , Molecular Structure , Monosaccharides/analysis , Mutagenesis , Polysaccharides, Bacterial/biosynthesis , Polysaccharides, Bacterial/ultrastructure , Solubility , Spectrum Analysis , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...