Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Wound Repair Regen ; 27(3): 235-248, 2019 05.
Article in English | MEDLINE | ID: mdl-30761686

ABSTRACT

This study was aimed to enhance the healing potential of rat bone marrow mesenchymal stem cells against chronic diabetic wounds through interleukin-7 (IL-7) transfection. IL-7 plays an important role in wound healing and acts as a survival factor in some cell types. This study involves isolation, propagation, and characterization of mesenchymal stem cells (MSCs) and their modification with IL-7 gene via retroviral transfection. Transfected MSCs were assessed for their effect on angiogenic genes by qPCR. Wound healing potential of transfected MSCs was analyzed by scratch assay in vitro and by transplanting these cells in rat diabetic wound models in vivo. Wound area was measured for a period of 15 days and subsequent histological analysis was performed. qPCR results showed increased expression of IL-7 gene (p ≤ 0.05) and also principal angiogenic genes, vascular endothelial growth factor (VEGF), hepatocyte growth factor (HGF), VEGF receptor 1 (FLT-1), and VEGF receptor 2 (FLK-1) (p ≤ 0.05). Neuropilin-1 (NRP-1) did not show any significant change. In vitro analysis of IL-7 MSCs showed intense cell-cell connections and tube formation as compared to the normal MSCs. Rate of wound closure was more (p ≤ 0.001) in case of diabetic group transplanted with IL-7 MSCs. Histological examination revealed enhanced vascular supply in skin tissues of diabetic animals transplanted with IL-7 transfected MSCs as compared to normal MSCs. Immunohistochemical results showed significantly higher expression of IL-7 (p ≤ 0.001) and α-smooth muscle actin(p ≤ 0.001) in the tissue sections of IL-7 transfected group as compared to normal MSCs and the diabetic control group; the latter indicates increase in the number of blood vessels. It is concluded from this study that IL-7 overexpression in MSCs can enhance the healing potential of MSCs and aid in wound closure in diabetic animals through the induction of angiogenic genes.


Subject(s)
Bone Marrow Cells/cytology , Diabetes Mellitus, Experimental/pathology , Diabetes Mellitus, Experimental/therapy , Interleukin-7/metabolism , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells/metabolism , Wound Healing/physiology , Animals , Cell Proliferation/physiology , Cells, Cultured , Disease Models, Animal , Immunohistochemistry , Rats , Vascular Endothelial Growth Factor A/metabolism
2.
Drug Des Devel Ther ; 10: 81-91, 2016.
Article in English | MEDLINE | ID: mdl-26766903

ABSTRACT

Small molecules, growth factors, and cytokines have been used to induce differentiation of stem cells into different lineages. Similarly, demethylating agents can trigger differentiation in adult stem cells. Here, we investigated the in vitro differentiation of rat bone marrow mesenchymal stem cells (MSCs) into cardiomyocytes by a demethylating agent, zebularine, as well as neuronal-like cells by ß-mercaptoethanol in a growth factor or cytokines-free media. Isolated bone marrow-derived MSCs cultured in Dulbecco's Modified Eagle's Medium exhibited a fibroblast-like morphology. These cells expressed positive markers for CD29, CD44, and CD117 and were negative for CD34 and CD45. After treatment with 1 µM zebularine for 24 hours, the MSCs formed myotube-like structures after 10 days in culture. Expression of cardiac-specific genes showed that treated MSCs expressed significantly higher levels of cardiac troponin-T, Nkx2.5, and GATA-4 compared with untreated cells. Immunocytochemical analysis showed that differentiated cells also expressed cardiac proteins, GATA-4, Nkx 2.5, and cardiac troponin-T. For neuronal differentiation, MSCs were treated with 1 and 10 mM ß-mercaptoethanol overnight for 3 hours in complete and serum-free Dulbecco's Modified Eagle's Medium, respectively. Following overnight treatment, neuron-like cells with axonal and dendritic-like projections originating from the cell body toward the neighboring cells were observed in the culture. The mRNA expression of neuronal-specific markers, Map2, Nefl, Tau, and Nestin, was significantly higher, indicating that the treated cells differentiated into neuronal-like cells. Immunostaining showed that differentiated cells were positive for the neuronal markers Flk, Nef, Nestin, and ß-tubulin.


Subject(s)
Bone Marrow Cells/cytology , Mesenchymal Stem Cells/cytology , Myocytes, Cardiac/cytology , Neurons/cytology , Animals , Cell Differentiation , Cytidine/analogs & derivatives , Cytidine/pharmacology , Mercaptoethanol/pharmacology , RNA, Messenger/metabolism , Rats , Rats, Sprague-Dawley
SELECTION OF CITATIONS
SEARCH DETAIL
...