Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Healthcare (Basel) ; 10(2)2022 Jan 19.
Article in English | MEDLINE | ID: mdl-35206804

ABSTRACT

Long wait times and crowding are major issues affecting outpatient service delivery, but it is unclear how these affect patients in dual practice settings. This study aims to evaluate the effects of changing consultation start time and patient arrival on wait times and crowding in an outpatient clinic with a dual practice system. A discrete event simulation (DES) model was developed based on real-world data from an Obstetrics and Gynaecology (O&G) clinic in a public hospital. Data on patient flow, resource availability, and time taken for registration and clinic processes for public and private patients were sourced from stakeholder discussion and time-motion study (TMS), while arrival times were sourced from the hospital's information system database. Probability distributions were used to fit these input data in the model. Scenario analyses involved configurations on consultation start time/staggered patient arrival. The median registration and clinic turnaround times (TT) were significantly different between public and private patients (p < 0.01). Public patients have longer wait times than private patients in this study's dual practice setting. Scenario analyses showed that early consultation start time that matches patient arrival time and staggered arrival could reduce the overall TT for public and private patients by 40% and 21%, respectively. Similarly, the number of patients waiting at the clinic per hour could be reduced by 10-21% during clinic peak hours. Matching consultation start time with staggered patient arrival can potentially reduce wait times and crowding, especially for public patients, without incurring additional resource needs and help narrow the wait time gap between public and private patients. Healthcare managers and policymakers can consider simulation approaches for the monitoring and improvement of healthcare operational efficiency to meet rising healthcare demand and costs.

2.
PLoS One ; 8(4): e58402, 2013.
Article in English | MEDLINE | ID: mdl-23560037

ABSTRACT

M/G/C/C state dependent queuing networks consider service rates as a function of the number of residing entities (e.g., pedestrians, vehicles, and products). However, modeling such dynamic rates is not supported in modern Discrete Simulation System (DES) software. We designed an approach to cater this limitation and used it to construct the M/G/C/C state-dependent queuing model in Arena software. Using the model, we have evaluated and analyzed the impacts of various arrival rates to the throughput, the blocking probability, the expected service time and the expected number of entities in a complex network topology. Results indicated that there is a range of arrival rates for each network where the simulation results fluctuate drastically across replications and this causes the simulation results and analytical results exhibit discrepancies. Detail results that show how tally the simulation results and the analytical results in both abstract and graphical forms and some scientific justifications for these have been documented and discussed.


Subject(s)
Efficiency, Organizational/statistics & numerical data , Models, Statistical , Software , Computer Simulation , Humans , Markov Chains
SELECTION OF CITATIONS
SEARCH DETAIL
...